Tensorflow Planner (TF-Plan) google
In many real-world planning problems with factored, mixed discrete and continuous state and action spaces such as Reservoir Control, Heating Ventilation, and Air Conditioning, and Navigation domains, it is difficult to obtain a model of the complex nonlinear dynamics that govern state evolution. However, the ubiquity of modern sensors allows us to collect large quantities of data from each of these complex systems and build accurate, nonlinear deep neural network models of their state transitions. But there remains one major problem for the task of control — how can we plan with deep network learned transition models without resorting to Monte Carlo Tree Search and other black-box transition model techniques that ignore model structure and do not easily extend to mixed discrete and continuous domains? In this paper, we introduce two types of nonlinear planning methods that can leverage deep neural network learned transition models: Hybrid Deep MILP Planner (HD-MILP-Plan) and Tensorflow Planner (TF-Plan). In HD-MILP-Plan, we make the critical observation that the Rectified Linear Unit transfer function for deep networks not only allows faster convergence of model learning, but also permits a direct compilation of the deep network transition model to a Mixed-Integer Linear Program encoding. Further, we identify deep network specific optimizations for HD-MILP-Plan that improve performance over a base encoding and show that we can plan optimally with respect to the learned deep networks. In TF-Plan, we take advantage of the efficiency of auto-differentiation tools and GPU-based computation where we encode a subclass of purely continuous planning problems as Recurrent Neural Networks and directly optimize the actions through backpropagation. We compare both planners and show that TF-Plan is able to approximate the optimal plans found by HD-MILP-Plan in less computation time… …

Stigmergic Learning Model google
Stigmergy has proved its great superiority in terms of distributed control, robustness and adaptability, thus being regarded as an ideal solution for large-scale swarm control problems. Based on new discoveries on astrocytes in regulating synaptic transmission in the brain, this paper has mapped stigmergy mechanism into the interaction between synapses and investigated its characteristics and advantages. Particularly, we have divided the interaction between synapses which are not directly connected into three phases and proposed a stigmergic learning model. In this model, the state change of a stigmergy agent will expand its influence to affect the states of others. The strength of the interaction is determined by the level of neural activity as well as the distance between stigmergy agents. Inspired by the morphological and functional changes in astrocytes during environmental enrichment, it is likely that the regulation of distance between stigmergy agents plays a critical role in the stigmergy learning process. Simulation results have verified its importance and indicated that the well-regulated distance between stigmergy agents can help to obtain stigmergy learning gain. …

Contrastive Multivariate Singular Spectrum Analysis google
We introduce Contrastive Multivariate Singular Spectrum Analysis, a novel unsupervised method for dimensionality reduction and signal decomposition of time series data. By utilizing an appropriate background dataset, the method transforms a target time series dataset in a way that evinces the sub-signals that are enhanced in the target dataset, as opposed to only those that account for the greatest variance. This shifts the goal from finding signals that explain the most variance to signals that matter the most to the analyst. We demonstrate our method on an illustrative synthetic example, as well as show the utility of our method in the downstream clustering of electrocardiogram signals from the public MHEALTH dataset. …

L2AE-D google
Few-shot learning focuses on learning a new visual concept with very limited labelled examples. A successful approach to tackle this problem is to compare the similarity between examples in a learned metric space based on convolutional neural networks. However, existing methods typically suffer from meta-level overfitting due to the limited amount of training tasks and do not normally consider the importance of the convolutional features of different examples within the same channel. To address these limitations, we make the following two contributions: (a) We propose a novel meta-learning approach for aggregating useful convolutional features and suppressing noisy ones based on a channel-wise attention mechanism to improve class representations. The proposed model does not require fine-tuning and can be trained in an end-to-end manner. The main novelty lies in incorporating a shared weight generation module that learns to assign different weights to the feature maps of different examples within the same channel. (b) We also introduce a simple meta-level dropout technique that reduces meta-level overfitting in several few-shot learning approaches. In our experiments, we find that this simple technique significantly improves the performance of the proposed method as well as various state-of-the-art meta-learning algorithms. Applying our method to few-shot image recognition using Omniglot and miniImageNet datasets shows that it is capable of delivering a state-of-the-art classification performance. …