Devices comprising the Internet of Things, such as sensors and small cameras, usually have small memories and limited computational power. The proliferation of such resource-constrained devices in recent years has led to the generation of large quantities of data. These data-producing devices are appealing targets for machine learning applications but struggle to run machine learning algorithms due to their limited computing capability. They typically offload input data to external computing systems (such as cloud servers) for further processing. The results of the machine learning computations are communicated back to the resource-scarce devices, but this worsens latency, leads to increased communication costs, and adds to privacy concerns. Therefore, efforts have been made to place additional computing devices at the edge of the network, i.e close to the IoT devices where the data is generated. Deploying machine learning systems on such edge devices alleviates the above issues by allowing computations to be performed close to the data sources. This survey describes major research efforts where machine learning has been deployed at the edge of computer networks. Machine Learning at the Network Edge: A Survey

Advertisements