Feature Relevance Interval (FRI) google
Most existing feature selection methods are insufficient for analytic purposes as soon as high dimensional data or redundant sensor signals are dealt with since features can be selected due to spurious effects or correlations rather than causal effects. To support the finding of causal features in biomedical experiments, we hereby present FRI, an open source Python library that can be used to identify all-relevant variables in linear classification and (ordinal) regression problems. Using the recently proposed feature relevance method, FRI is able to provide the base for further general experimentation or in specific can facilitate the search for alternative biomarkers. It can be used in an interactive context, by providing model manipulation and visualization methods, or in a batch process as a filter method. …

ZK-GanDef google
Neural Network classifiers have been used successfully in a wide range of applications. However, their underlying assumption of attack free environment has been defied by adversarial examples. Researchers tried to develop defenses; however, existing approaches are still far from providing effective solutions to this evolving problem. In this paper, we design a generative adversarial net (GAN) based zero knowledge adversarial training defense, dubbed ZK-GanDef, which does not consume adversarial examples during training. Therefore, ZK-GanDef is not only efficient in training but also adaptive to new adversarial examples. This advantage comes at the cost of small degradation in test accuracy compared to full knowledge approaches. Our experiments show that ZK-GanDef enhances test accuracy on adversarial examples by up-to 49.17% compared to zero knowledge approaches. More importantly, its test accuracy is close to that of the state-of-the-art full knowledge approaches (maximum degradation of 8.46%), while taking much less training time. …

Interactive Differentiable Simulation (IDS) google
Intelligent agents need a physical understanding of the world to predict the impact of their actions in the future. While learning-based models of the environment dynamics have contributed to significant improvements in sample efficiency compared to model-free reinforcement learning algorithms, they typically fail to generalize to system states beyond the training data, while often grounding their predictions on non-interpretable latent variables. We introduce Interactive Differentiable Simulation (IDS), a differentiable physics engine, that allows for efficient, accurate inference of physical properties of rigid-body systems. Integrated into deep learning architectures, our model is able to accomplish system identification using visual input, leading to an interpretable model of the world whose parameters have physical meaning. We present experiments showing automatic task-based robot design and parameter estimation for nonlinear dynamical systems by automatically calculating gradients in IDS. When integrated into an adaptive model-predictive control algorithm, our approach exhibits orders of magnitude improvements in sample efficiency over model-free reinforcement learning algorithms on challenging nonlinear control domains. …

MultiQA google
A large number of reading comprehension (RC) datasets has been created recently, but little analysis has been done on whether they generalize to one another, and the extent to which existing datasets can be leveraged for improving performance on new ones. In this paper, we conduct such an investigation over ten RC datasets, training on one or more source RC datasets, and evaluating generalization, as well as transfer to a target RC dataset. We analyze the factors that contribute to generalization, and show that training on a source RC dataset and transferring to a target dataset substantially improves performance, even in the presence of powerful contextual representations from BERT (Devlin et al., 2019). We also find that training on multiple source RC datasets leads to robust generalization and transfer, and can reduce the cost of example collection for a new RC dataset. Following our analysis, we propose MultiQA, a BERT-based model, trained on multiple RC datasets, which leads to state-of-the-art performance on five RC datasets. We share our infrastructure for the benefit of the research community. …

Advertisements