**Moderated Network Model (MNW)**

Pairwise network models such as the Gaussian Graphical Model (GGM) are a powerful and intuitive way to analyze dependencies in multivariate data. A key assumption of the GGM is that each pairwise interaction is independent of the values of all other variables. However, in psychological research this is often implausible. In this paper, we extend the GGM by allowing each pairwise interaction between two variables to be moderated by (a subset of) all other variables in the model, and thereby introduce a Moderated Network Model (MNM). We show how to construct the MNW and propose an L1-regularized nodewise regression approach to estimate it. We provide performance results in a simulation study and show that MNMs outperform the split-sample based methods Network Comparison Test (NCT) and Fused Graphical Lasso (FGL) in detecting moderation effects. Finally, we provide a fully reproducible tutorial on how to estimate MNMs with the R-package mgm and discuss possible issues with model misspecification. … **Adaptive Batch Size (AdaBatch)**

Training deep neural networks with Stochastic Gradient Descent, or its variants, requires careful choice of both learning rate and batch size. While smaller batch sizes generally converge in fewer training epochs, larger batch sizes offer more parallelism and hence better computational efficiency. We have developed a new training approach that, rather than statically choosing a single batch size for all epochs, adaptively increases the batch size during the training process. Our method delivers the convergence rate of small batch sizes while achieving performance similar to large batch sizes. We analyse our approach using the standard AlexNet, ResNet, and VGG networks operating on the popular CIFAR-10, CIFAR-100, and ImageNet datasets. Our results demonstrate that learning with adaptive batch sizes can improve performance by factors of up to 6.25 on 4 NVIDIA Tesla P100 GPUs while changing accuracy by less than 1% relative to training with fixed batch sizes. … **Bilinear Attention Network (BAN)**

Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets. … **ExFaKT**

Fact checking is a crucial task for accurately populating, updating and curating knowledge graphs. Manually validating candidate facts is time-consuming. Prior work on automating this task focuses on estimating truthfulness using numerical scores which are not human-interpretable. Others extract explicit mentions of the candidate fact in the text as an evidence for the candidate fact, which can be hard to directly spot. In our work, we introduce ExFaKT, a framework focused on generating human-comprehensible explanations for candidate facts. ExFaKT uses background knowledge encoded in the form of Horn clauses to rewrite the fact in question into a set of other easier-to-spot facts. The final output of our framework is a set of semantic traces for the candidate fact from both text and knowledge graphs. The experiments demonstrate that our rewritings significantly increase the recall of fact spotting while preserving high precision. Moreover, we show that the explanations effectively help humans to perform fact-checking and can also perform well when used for automated fact-checking. …

# If you did not already know

**25**
*Friday*
Oct 2019

Posted What is ...

in