Local Orthogonal Decomposition google
Inverted file and asymmetric distance computation (IVFADC) have been successfully applied to approximate nearest neighbor search and subsequently maximum inner product search. In such a framework, vector quantization is used for coarse partitioning while product quantization is used for quantizing residuals. In the original IVFADC as well as all of its variants, after residuals are computed, the second production quantization step is completely independent of the first vector quantization step. In this work, we seek to exploit the connection between these two steps when we perform non-exhaustive search. More specifically, we decompose a residual vector locally into two orthogonal components and perform uniform quantization and multiscale quantization to each component respectively. The proposed method, called local orthogonal decomposition, combined with multiscale quantization consistently achieves higher recall than previous methods under the same bitrates. We conduct comprehensive experiments on large scale datasets as well as detailed ablation tests, demonstrating effectiveness of our method. …

Quantitative Discourse Analysis google
Quantitative Discourse Analysis is basically looking at patterns in language. …

Fast and Accurate Timing Error Prediction Framework (FATE) google
Deep neural networks (DNN) are increasingly being accelerated on application-specific hardware such as the Google TPU designed especially for deep learning. Timing speculation is a promising approach to further increase the energy efficiency of DNN accelerators. Architectural exploration for timing speculation requires detailed gate-level timing simulations that can be time-consuming for large DNNs that execute millions of multiply-and-accumulate (MAC) operations. In this paper we propose FATE, a new methodology for fast and accurate timing simulations of DNN accelerators like the Google TPU. FATE proposes two novel ideas: (i) DelayNet, a DNN based timing model for MAC units; and (ii) a statistical sampling methodology that reduces the number of MAC operations for which timing simulations are performed. We show that FATE results in between 8 times-58 times speed-up in timing simulations, while introducing less than 2% error in classification accuracy estimates. We demonstrate the use of FATE by comparing to conventional DNN accelerator that uses 2’s complement (2C) arithmetic with an alternative implementation that uses signed magnitude representations (SMR). We show that that the SMR implementation provides 18% more energy savings for the same classification accuracy than 2C, a result that might be of independent interest. …

MetaForest google
A requirement of classic meta-analysis is that the studies being aggregated are conceptually similar, and ideally, close replications. However, in many fields, there is substantial heterogeneity between studies on the same topic. Similar research questions are studied in different laboratories, using different methods, instruments, and samples. Classic meta-analysis lacks the power to assess more than a handful of univariate moderators, or to investigate interactions between moderators, and non-linear effects. MetaForest, by contrast, has substantial power to explore heterogeneity in meta-analysis. It can identify important moderators from a larger set of potential candidates, even with as little as 20 studies (Van Lissa, in preparation). This is an appealing quality, because many meta-analyses have small sample sizes. Moreover, MetaForest yields a measure of variable importance which can be used to identify important moderators, and offers partial prediction plots to explore the shape of the marginal relationship between moderators and effect size. …