Policy Learning based on Completely Behavior Cloning (PLCBC) google
Direct policy search is one of the most important algorithm of reinforcement learning. However, learning from scratch needs a large amount of experience data and can be easily prone to poor local optima. In addition to that, a partially trained policy tends to perform dangerous action to agent and environment. In order to overcome these challenges, this paper proposed a policy initialization algorithm called Policy Learning based on Completely Behavior Cloning (PLCBC). PLCBC first transforms the Model Predictive Control (MPC) controller into a piecewise affine (PWA) function using multi-parametric programming, and uses a neural network to express this function. By this way, PLCBC can completely clone the MPC controller without any performance loss, and is totally training-free. The experiments show that this initialization strategy can help agent learn at the high reward state region, and converge faster and better. …

PredRNN++ google
We present PredRNN++, an improved recurrent network for video predictive learning. In pursuit of a greater spatiotemporal modeling capability, our approach increases the transition depth between adjacent states by leveraging a novel recurrent unit, which is named Causal LSTM for re-organizing the spatial and temporal memories in a cascaded mechanism. However, there is still a dilemma in video predictive learning: increasingly deep-in-time models have been designed for capturing complex variations, while introducing more difficulties in the gradient back-propagation. To alleviate this undesirable effect, we propose a Gradient Highway architecture, which provides alternative shorter routes for gradient flows from outputs back to long-range inputs. This architecture works seamlessly with causal LSTMs, enabling PredRNN++ to capture short-term and long-term dependencies adaptively. We assess our model on both synthetic and real video datasets, showing its ability to ease the vanishing gradient problem and yield state-of-the-art prediction results even in a difficult objects occlusion scenario. …

ReSIFT google
This paper presents a full-reference image quality estimator based on SIFT descriptor matching over reliability-weighted feature maps. Reliability assignment includes a smoothing operation, a transformation to perceptual color domain, a local normalization stage, and a spectral residual computation with global normalization. The proposed method ReSIFT is tested on the LIVE and the LIVE Multiply Distorted databases and compared with 11 state-of-the-art full-reference quality estimators. In terms of the Pearson and the Spearman correlation, ReSIFT is the best performing quality estimator in the overall databases. Moreover, ReSIFT is the best performing quality estimator in at least one distortion group in compression, noise, and blur category. …

Feature Generation by Convolutional Neural Network (FGCNN) google
Click-Through Rate prediction is an important task in recommender systems, which aims to estimate the probability of a user to click on a given item. Recently, many deep models have been proposed to learn low-order and high-order feature interactions from original features. However, since useful interactions are always sparse, it is difficult for DNN to learn them effectively under a large number of parameters. In real scenarios, artificial features are able to improve the performance of deep models (such as Wide & Deep Learning), but feature engineering is expensive and requires domain knowledge, making it impractical in different scenarios. Therefore, it is necessary to augment feature space automatically. In this paper, We propose a novel Feature Generation by Convolutional Neural Network (FGCNN) model with two components: Feature Generation and Deep Classifier. Feature Generation leverages the strength of CNN to generate local patterns and recombine them to generate new features. Deep Classifier adopts the structure of IPNN to learn interactions from the augmented feature space. Experimental results on three large-scale datasets show that FGCNN significantly outperforms nine state-of-the-art models. Moreover, when applying some state-of-the-art models as Deep Classifier, better performance is always achieved, showing the great compatibility of our FGCNN model. This work explores a novel direction for CTR predictions: it is quite useful to reduce the learning difficulties of DNN by automatically identifying important features. …

Advertisements