semopy google
Structural equation modelling (SEM) is a multivariate statistical technique for estimating complex relationships between observed and latent variables. Although numerous SEM packages exist, each of them has limitations. Some packages are not free or open-source; the most popular package not having this disadvantage is $\textbf{lavaan}$, but it is written in R language, which is behind current mainstream tendencies that make it harder to be incorporated into developmental pipelines (i.e. bioinformatical ones). Thus we developed the Python package $\textbf{semopy}$ to satisfy those criteria. The paper provides detailed examples of package usage and explains it’s inner clockworks. Moreover, we developed the unique generator of SEM models to extensively test SEM packages and demonstrated that $\textbf{semopy}$ significantly outperforms $\textbf{lavaan}$ in execution time and accuracy. …

Causaltoolbox google
Estimating heterogeneous treatment effects has become extremely important in many fields and often life changing decisions for individuals are based on these estimates, for example choosing a medical treatment for a patient. In the recent years, a variety of techniques for estimating heterogeneous treatment effects, each making subtly different assumptions, have been suggested. Unfortunately, there are no compelling approaches that allow identification of the procedure that has assumptions that hew closest to the process generating the data set under study and researchers often select just one estimator. This approach risks making inferences based on incorrect assumptions and gives the experimenter too much scope for p-hacking. A single estimator will also tend to overlook patterns other estimators would have picked up. We believe that the conclusion of many published papers might change had a different estimator been chosen and we suggest that practitioners should evaluate many estimators and assess their similarity when investigating heterogeneous treatment effects. We demonstrate this by applying 32 different estimation procedures to an emulated observational data set; this analysis shows that different estimation procedures may give starkly different estimates. We also provide an extensible \texttt{R} package which makes it straightforward for practitioners to apply our analysis to their data. …

Gradient Episodic Memory google
One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art. …

AlignFlow google
Given unpaired data from multiple domains, a key challenge is to efficiently exploit these data sources for modeling a target domain. Variants of this problem have been studied in many contexts, such as cross-domain translation and domain adaptation. We propose AlignFlow, a generative modeling framework for learning from multiple domains via normalizing flows. The use of normalizing flows in AlignFlow allows for a) flexibility in specifying learning objectives via adversarial training, maximum likelihood estimation, or a hybrid of the two methods; and b) exact inference of the shared latent factors across domains at test time. We derive theoretical results for the conditions under which AlignFlow guarantees marginal consistency for the different learning objectives. Furthermore, we show that AlignFlow guarantees exact cycle consistency in mapping datapoints from one domain to another. Empirically, AlignFlow can be used for data-efficient density estimation given multiple data sources and shows significant improvements over relevant baselines on unsupervised domain adaptation. …

Advertisements