Contextual Recurrent Neural Networks (Contextual RNN) google
There is an implicit assumption that by unfolding recurrent neural networks (RNN) in finite time, the misspecification of choosing a zero value for the initial hidden state is mitigated by later time steps. This assumption has been shown to work in practice and alternative initialization may be suggested but often overlooked. In this paper, we propose a method of parameterizing the initial hidden state of an RNN. The resulting architecture, referred to as a Contextual RNN, can be trained end-to-end. The performance on an associative retrieval task is found to improve by conditioning the RNN initial hidden state on contextual information from the input sequence. Furthermore, we propose a novel method of conditionally generating sequences using the hidden state parameterization of Contextual RNN. …

SEmi-supervised grAph cLassification via Cautious/Active Iteration (SEAL-C/AI) google
Node classification and graph classification are two graph learning problems that predict the class label of a node and the class label of a graph respectively. A node of a graph usually represents a real-world entity, e.g., a user in a social network, or a protein in a protein-protein interaction network. In this work, we consider a more challenging but practically useful setting, in which a node itself is a graph instance. This leads to a hierarchical graph perspective which arises in many domains such as social network, biological network and document collection. For example, in a social network, a group of people with shared interests forms a user group, whereas a number of user groups are interconnected via interactions or common members. We study the node classification problem in the hierarchical graph where a `node’ is a graph instance, e.g., a user group in the above example. As labels are usually limited in real-world data, we design two novel semi-supervised solutions named \underline{SE}mi-supervised gr\underline{A}ph c\underline{L}assification via \underline{C}autious/\underline{A}ctive \underline{I}teration (or SEAL-C/AI in short). SEAL-C/AI adopt an iterative framework that takes turns to build or update two classifiers, one working at the graph instance level and the other at the hierarchical graph level. To simplify the representation of the hierarchical graph, we propose a novel supervised, self-attentive graph embedding method called SAGE, which embeds graph instances of arbitrary size into fixed-length vectors. Through experiments on synthetic data and Tencent QQ group data, we demonstrate that SEAL-C/AI not only outperform competing methods by a significant margin in terms of accuracy/Macro-F1, but also generate meaningful interpretations of the learned representations. …

DLHub google
While the Machine Learning (ML) landscape is evolving rapidly, there has been a relative lag in the development of the ‘learning systems’ needed to enable broad adoption. Furthermore, few such systems are designed to support the specialized requirements of scientific ML. Here we present the Data and Learning Hub for science (DLHub), a multi-tenant system that provides both model repository and serving capabilities with a focus on science applications. DLHub addresses two significant shortcomings in current systems. First, its selfservice model repository allows users to share, publish, verify, reproduce, and reuse models, and addresses concerns related to model reproducibility by packaging and distributing models and all constituent components. Second, it implements scalable and low-latency serving capabilities that can leverage parallel and distributed computing resources to democratize access to published models through a simple web interface. Unlike other model serving frameworks, DLHub can store and serve any Python 3-compatible model or processing function, plus multiple-function pipelines. We show that relative to other model serving systems including TensorFlow Serving, SageMaker, and Clipper, DLHub provides greater capabilities, comparable performance without memoization and batching, and significantly better performance when the latter two techniques can be employed. We also describe early uses of DLHub for scientific applications. …

Finite First-Order Theory google
We present the finite first-order theory (FFOT) machine, which provides an atemporal description of computation. We then develop a concept of complexity for the FFOT machine, and prove that the class of problems decidable by a FFOT machine with polynomial resources is NP intersect co-NP. …

Advertisements