**Non-Parametric Transformation Network (NPTN)**

ConvNets have been very effective in many applications where it is required to learn invariances to within-class nuisance transformations. However, through their architecture, ConvNets only enforce invariance to translation. In this paper, we introduce a new class of convolutional architectures called Non-Parametric Transformation Networks (NPTNs) which can learn general invariances and symmetries directly from data. NPTNs are a direct and natural generalization of ConvNets and can be optimized directly using gradient descent. They make no assumption regarding structure of the invariances present in the data and in that aspect are very flexible and powerful. We also model ConvNets and NPTNs under a unified framework called Transformation Networks which establishes the natural connection between the two. We demonstrate the efficacy of NPTNs on natural data such as MNIST and CIFAR 10 where it outperforms ConvNet baselines with the same number of parameters. We show it is effective in learning invariances unknown apriori directly from data from scratch. Finally, we apply NPTNs to Capsule Networks and show that they enable them to perform even better. … **Stratified Sampling**

In statistics, stratified sampling is a method of sampling from a population which can be partitioned into subpopulations. In statistical surveys, when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation (stratum) independently. Stratification is the process of dividing members of the population into homogeneous subgroups before sampling. The strata should define a partition of the population. That is, it should be collectively exhaustive and mutually exclusive: every element in the population must be assigned to one and only one stratum. Then simple random sampling or systematic sampling is applied within each stratum. The objective is to improve the precision of the sample by reducing sampling error. It can produce a weighted mean that has less variability than the arithmetic mean of a simple random sample of the population. In computational statistics, stratified sampling is a method of variance reduction when Monte Carlo methods are used to estimate population statistics from a known population. Assume that we need to estimate average number of votes for each candidate in an election. Assume that country has 3 towns: Town A has 1 million factory workers, Town B has 2 million office workers and Town C has 3 million retirees. We can choose to get a random sample of size 60 over the entire population but there is some chance that the random sample turns out to be not well balanced across these towns and hence is biased causing a significant error in estimation. Instead if we choose to take a random sample of 10, 20 and 30 from Town A, B and C respectively then we can produce a smaller error in estimation for the same total size of sample. … **Normal Beta Prime Prior**

introduced by Bai and Ghosh (2018) <arXiv:1807.02421> and Bai and Ghosh (2018) <arXiv:1807.06539>. Normal means estimation and multiple testing for the Dirichlet-Laplace <doi:10.1080/01621459.2014.960967> and horseshoe+ priors <doi:10.1214/16-BA1028>. … **BridgeNet**

Age estimation is an important yet very challenging problem in computer vision. Existing methods for age estimation usually apply a divide-and-conquer strategy to deal with heterogeneous data caused by the non-stationary aging process. However, the facial aging process is also a continuous process, and the continuity relationship between different components has not been effectively exploited. In this paper, we propose BridgeNet for age estimation, which aims to mine the continuous relation between age labels effectively. The proposed BridgeNet consists of local regressors and gating networks. Local regressors partition the data space into multiple overlapping subspaces to tackle heterogeneous data and gating networks learn continuity aware weights for the results of local regressors by employing the proposed bridge-tree structure, which introduces bridge connections into tree models to enforce the similarity between neighbor nodes. Moreover, these two components of BridgeNet can be jointly learned in an end-to-end way. We show experimental results on the MORPH II, FG-NET and Chalearn LAP 2015 datasets and find that BridgeNet outperforms the state-of-the-art methods. …

# If you did not already know

**10**
*Tuesday*
Sep 2019

Posted What is ...

in
Advertisements