Paper: Analysis of regression discontinuity designs using censored data

In medical settings, treatment assignment may be determined by a clinically important covariate that predicts patients’ risk of event. There is a class of methods from the social science literature known as regression discontinuity (RD) designs that can be used to estimate the treatment effect in this situation. Under certain assumptions, such an estimand enjoys a causal interpretation. However, few authors have discussed the use of RD for censored data. In this paper, we show how to estimate causal effects under the regression discontinuity design for censored data. The proposed estimation procedure employs a class of censoring unbiased transformations that includes inverse probability censored weighting and doubly robust transformation schemes. Simulation studies demonstrate the utility of the proposed methodology.


Paper: Detecting Heterogeneous Treatment Effect with Instrumental Variables

There is an increasing interest in estimating heterogeneity in causal effects in randomized and observational studies. However, little research has been conducted to understand heterogeneity in an instrumental variables study. In this work, we present a method to estimate heterogeneous causal effects using an instrumental variable approach. The method has two parts. The first part uses subject-matter knowledge and interpretable machine learning techniques, such as classification and regression trees, to discover potential effect modifiers. The second part uses closed testing to test for the statistical significance of the effect modifiers while strongly controlling familywise error rate. We conducted this method on the Oregon Health Insurance Experiment, estimating the effect of Medicaid on the number of days an individual’s health does not impede their usual activities, and found evidence of heterogeneity in older men who prefer English and don’t self-identify as Asian and younger individuals who have at most a high school diploma or GED and prefer English.


Paper: LoRMIkA: Local Rule-based Model Interpretability with k-optimal Associations

As we rely more and more on machine learning models for real-life decision-making, being able to understand and trust the predictions becomes ever more important. Local explainer models have recently been introduced to explain the predictions of complex machine learning models at the instance level. In this paper, we propose Local Rule-based Model Interpretability with k-optimal Associations (LoRMIkA), a novel model-agnostic approach that obtains k-optimal association rules from a neighborhood of the instance to be explained. Compared to other rule-based approaches in the literature, we argue that the most predictive rules are not necessarily the rules that provide the best explanations. Consequently, the LoRMIkA framework provides a flexible way to obtain predictive and interesting rules. It uses an efficient search algorithm guaranteed to find the k-optimal rules with respect to objectives such as strength, lift, leverage, coverage, and support. It also provides multiple rules which explain the decision and counterfactual rules, which give indications for potential changes to obtain different outputs for given instances. We compare our approach to other state-of-the-art approaches in local model interpretability on three different datasets, and achieve competitive results in terms of local accuracy and interpretability.


Paper: A new Granger causality measure for eliminating the confounding influence of latent common inputs

In this paper, we propose a new Granger causality measure which is robust against the confounding influence of latent common inputs. This measure is inspired by partial Granger causality in the literature, and its variant. Using numerical experiments we first show that the test statistics for detecting directed interactions between time series approximately obey the $F$-distributions when there are no interactions. Then, we propose a practical procedure for inferring directed interactions, which is based on the idea of multiple statistical test in situations where the confounding influence of latent common inputs may exist. The results of numerical experiments demonstrate that the proposed method successfully eliminates the influence of latent common inputs while the normal Granger causality method detects spurious interactions due to the influence of the confounder.


Paper: Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables

We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, one usually infers wrong causal relationships among the observed variables. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among them. The next question is then whether or not the causal effects can be uniquely identified as well. It can be shown that causal effects among observed variables cannot be identified uniquely even under the assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we will propose an efficient method to identify the set of all possible causal effects that are compatible with the observational data. Furthermore, we present some structural conditions on the causal graph under which we can learn causal effects among observed variables uniquely. We also provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm on learning causal models.


Article: Beyond ‘Treatment Versus Control’: How Bayesian Analysis Makes Factorial Experiments Feasible in Education Research’

Bayesian methods are a valuable tool for researchers interested in studying complex interventions. They make factorial experiments with many treatment arms vastly more feasible.
Advertisements