Contextual Memory Tree google
We design and study a Contextual Memory Tree (CMT), a learning memory controller that inserts new memories into an experience store of unbounded size. It is designed to efficiently query for memories from that store, supporting logarithmic time insertion and retrieval operations. Hence CMT can be integrated into existing statistical learning algorithms as an augmented memory unit without substantially increasing training and inference computation. We demonstrate the efficacy of CMT by augmenting existing multi-class and multi-label classification algorithms with CMT and observe statistical improvement. We also test CMT learning on several image-captioning tasks to demonstrate that it performs computationally better than a simple nearest neighbors memory system while benefitting from reward learning. …

Proximal Policy Optimization with Covariance Matrix Adaptation (PPO-CMA) google
Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy — common in computer animation and robotics — PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks. …

CNN-Cert google
Verifying robustness of neural network classifiers has attracted great interests and attention due to the success of deep neural networks and their unexpected vulnerability to adversarial perturbations. Although finding minimum adversarial distortion of neural networks (with ReLU activations) has been shown to be an NP-complete problem, obtaining a non-trivial lower bound of minimum distortion as a provable robustness guarantee is possible. However, most previous works only focused on simple fully-connected layers (multilayer perceptrons) and were limited to ReLU activations. This motivates us to propose a general and efficient framework, CNN-Cert, that is capable of certifying robustness on general convolutional neural networks. Our framework is general — we can handle various architectures including convolutional layers, max-pooling layers, batch normalization layer, residual blocks, as well as general activation functions; our approach is efficient — by exploiting the special structure of convolutional layers, we achieve up to 17 and 11 times of speed-up compared to the state-of-the-art certification algorithms (e.g. Fast-Lin, CROWN) and 366 times of speed-up compared to the dual-LP approach while our algorithm obtains similar or even better verification bounds. In addition, CNN-Cert generalizes state-of-the-art algorithms e.g. Fast-Lin and CROWN. We demonstrate by extensive experiments that our method outperforms state-of-the-art lower-bound-based certification algorithms in terms of both bound quality and speed. …

Self-Taught Associative Memory (STAM) google
We first pose the Unsupervised Continual Learning (UCL) problem: learning salient representations from a non-stationary stream of unlabeled data in which the number of object classes varies with time. Given limited labeled data just before inference, those representations can also be associated with specific object types to perform classification. To solve the UCL problem, we propose an architecture that involves a single module, called Self-Taught Associative Memory (STAM), which loosely models the function of a cortical column in the mammalian brain. Hierarchies of STAM modules learn based on a combination of Hebbian learning, online clustering, detection of novel patterns, forgetting outliers, and top-down predictions. We illustrate the operation of STAMs in the context of learning handwritten digits in a continual manner with only 3-12 labeled examples per class. STAMs suggest a promising direction to solve the UCL problem without catastrophic forgetting. …

Advertisements