Mixture Hyper Long Short Term Memory Network google
Classifying human cognitive states from behavioral and physiological signals is a challenging problem with important applications in robotics. The problem is challenging due to the data variability among individual users, and sensor artefacts. In this work, we propose an end-to-end framework for real-time cognitive workload classification with mixture Hyper Long Short Term Memory Networks, a novel variant of HyperNetworks. Evaluating the proposed approach on an eye-gaze pattern dataset collected from simulated driving scenarios of different cognitive demands, we show that the proposed framework outperforms previous baseline methods and achieves 83.9\% precision and 87.8\% recall during test. We also demonstrate the merit of our proposed architecture by showing improved performance over other LSTM-based methods. …

Adaptive Automatic Threat Recognition (AATR) google
This work addresses the question whether it is possible to design a computer-vision based automatic threat recognition (ATR) system so that it can adapt to changing specifications of a threat without having to create a new ATR each time. The changes in threat specifications, which may be warranted by intelligence reports and world events, are typically regarding the physical characteristics of what constitutes a threat: its material composition, its shape, its method of concealment, etc. Here we present our design of an AATR system (Adaptive ATR) that can adapt to changing specifications in materials characterization (meaning density, as measured by its x-ray attenuation coefficient), its mass, and its thickness. Our design uses a two-stage cascaded approach, in which the first stage is characterized by a high recall rate over the entire range of possibilities for the threat parameters that are allowed to change. The purpose of the second stage is to then fine-tune the performance of the overall system for the current threat specifications. The computational effort for this fine-tuning for achieving a desired PD/PFA rate is far less than what it would take to create a new classifier with the same overall performance for the new set of threat specifications. …

Partially Labeled Degree-Corrected Block Model (pDCBM) google
Community detection was a hot topic on network analysis, where the main aim is to perform unsupervised learning or clustering in networks. Recently, semi-supervised learning has received increasing attention among researchers. In this paper, we propose a new algorithm, called weighted inverse Laplacian (WIL), for predicting labels in partially labeled networks. The idea comes from the first hitting time in random walk, and it also has nice explanations both in information propagation and the regularization framework. We propose a partially labeled degree-corrected block model (pDCBM) to describe the generation of partially labeled networks. We show that WIL ensures the misclassification rate is of order $O(\frac{1}{d})$ for the pDCBM with average degree $d=\Omega(\log n),$ and that it can handle situations with greater unbalanced than traditional Laplacian methods. WIL outperforms other state-of-the-art methods in most of our simulations and real datasets, especially in unbalanced networks and heterogeneous networks. …

NVIDIA Data Loading Library (DALI) google
Today’s deep learning applications include complex, multi-stage pre-processing data pipelines that include compute-intensive steps mainly carried out on the CPU. For instance, steps such as load data from disk, decode, crop, random resize, color and spatial augmentations and format conversions are carried out on the CPUs, limiting the performance and scalability of training and inference tasks. In addition, the deep learning frameworks today have multiple data pre-processing implementations, resulting in challenges such as portability of training and inference workflows and code maintainability. NVIDIA Data Loading Library (DALI) is a collection of highly optimized building blocks and an execution engine to accelerate input data pre-processing for deep learning applications. DALI provides both performance and flexibility of accelerating different data pipelines, as a single library, that can be easily integrated into different deep learning training and inference applications. …