* Paper*:

**Collaboration of AI Agents via Cooperative Multi-Agent Deep Reinforcement Learning**There are many AI tasks involving multiple interacting agents where agents should learn to cooperate and collaborate to effectively perform the task. Here we develop and evaluate various multi-agent protocols to train agents to collaborate with teammates in grid soccer. We train and evaluate our multi-agent methods against a team operating with a smart hand-coded policy. As a baseline, we train agents concurrently and independently, with no communication. Our collaborative protocols were parameter sharing, coordinated learning with communication, and counterfactual policy gradients. Against the hand-coded team, the team trained with parameter sharing and the team trained with coordinated learning performed the best, scoring on 89.5% and 94.5% of episodes respectively when playing against the hand-coded team. Against the parameter sharing team, with adversarial training the coordinated learning team scored on 75% of the episodes, indicating it is the most adaptable of our methods. The insights gained from our work can be applied to other domains where multi-agent collaboration could be beneficial.

* Paper*:

**Bounding Causes of Effects with Mediators**Suppose X and Y are binary exposure and outcome variables, and we have full knowledge of the distribution of Y, given application of X. From this we know the average causal effect of X on Y. We are now interested in assessing, for a case that was exposed and exhibited a positive outcome, whether it was the exposure that caused the outcome. The relevant ‘probability of causation’, PC, typically is not identified by the distribution of Y given X, but bounds can be placed on it, and these bounds can be improved if we have further information about the causal process. Here we consider cases where we know the probabilistic structure for a sequence of complete mediators between X and Y. We derive a general formula for calculating bounds on PC for any pattern of data on the mediators (including the case with no data). We show that the largest and smallest upper and lower bounds that can result from any complete mediation process can be obtained in processes with at most two steps. We also consider homogeneous processes with many mediators. PC can sometimes be identified as 0 with negative data, but it cannot be identified at 1 even with positive data on an infinite set of mediators. The results have implications for learning about causation from knowledge of general processes and of data on cases.

* Paper*:

**trialr: Bayesian Clinical Trial Designs in R and Stan**This manuscript introduces an \proglang{R} package called \pkg{trialr} that implements a collection of clinical trial methods in \proglang{Stan} and \proglang{R}. In this article, we explore three methods in detail. The first is the continual reassessment method for conducting phase I dose-finding trials that seek a maximum tolerable dose. The second is EffTox, a dose-finding design that scrutinises doses by joint efficacy and toxicity outcomes. The third is the augmented binary method for modelling the probability of treatment success in phase II oncology trials with reference to repeated measures of continuous tumour size and binary indicators of treatment failure. We emphasise in this article the benefits that stem from having access to posterior samples, including flexible inference and powerful visualisation. We hope that this package encourages the use of Bayesian methods in clinical trials.

* Paper*:

**Learning to Find Correlated Features by Maximizing Information Flow in Convolutional Neural Networks**Training convolutional neural networks for image classification tasks usually causes information loss. Although most of the time the information lost is redundant with respect to the target task, there are still cases where discriminative information is also discarded. For example, if the samples that belong to the same category have multiple correlated features, the model may only learn a subset of the features and ignore the rest. This may not be a problem unless the classification in the test set highly depends on the ignored features. We argue that the discard of the correlated discriminative information is partially caused by the fact that the minimization of the classification loss doesn’t ensure to learn the overall discriminative information but only the most discriminative information. To address this problem, we propose an information flow maximization (IFM) loss as a regularization term to find the discriminative correlated features. With less information loss the classifier can make predictions based on more informative features. We validate our method on the shiftedMNIST dataset and show the effectiveness of IFM loss in learning representative and discriminative features.

* Paper*:

**The Sensitivity of Counterfactual Fairness to Unmeasured Confounding**Causal approaches to fairness have seen substantial recent interest, both from the machine learning community and from wider parties interested in ethical prediction algorithms. In no small part, this has been due to the fact that causal models allow one to simultaneously leverage data and expert knowledge to remove discriminatory effects from predictions. However, one of the primary assumptions in causal modeling is that you know the causal graph. This introduces a new opportunity for bias, caused by misspecifying the causal model. One common way for misspecification to occur is via unmeasured confounding: the true causal effect between variables is partially described by unobserved quantities. In this work we design tools to assess the sensitivity of fairness measures to this confounding for the popular class of non-linear additive noise models (ANMs). Specifically, we give a procedure for computing the maximum difference between two counterfactually fair predictors, where one has become biased due to confounding. For the case of bivariate confounding our technique can be swiftly computed via a sequence of closed-form updates. For multivariate confounding we give an algorithm that can be efficiently solved via automatic differentiation. We demonstrate our new sensitivity analysis tools in real-world fairness scenarios to assess the bias arising from confounding.

* Paper*:

**Bundled Causal History Interaction**Complex system arises as a result of the nonlinear interactions between components. In particular, the evolutionary dynamics of a multivariate system encodes the ways in which different variables interact with each other individually or in groups. One fundamental question that remains unanswered is: how do two non-overlapping multivariate subsets of variables interact to causally determine the outcome of a specific variable? Here we provide an information based approach to address this problem. We delineate the temporal interactions between the bundles in a probabilistic graphical model. The strength of the interactions, captured by partial information decomposition, then exposes complex behavior of dependencies and memory within the system. The proposed approach successfully illustrates complex dependence between cations and anions as determinants of \textit{pH} in an observed stream chemistry system. This example demonstrates the potentially broad applicability of the approach, establishing the foundation to study the interaction between groups of variables in a range of complex systems.

Advertisements