MultiScale AutoEncoder (MSAE) google
We propose a MultiScale AutoEncoder (MSAE) based extreme image compression framework to offer visually pleasing reconstruction at a very low bitrate. Our method leverages the ‘priors’ at different resolution scale to improve the compression efficiency, and also employs the generative adversarial network(GAN) with multiscale discriminators to perform the end-to-end trainable rate-distortion optimization. We compare the perceptual quality of our reconstructions with traditional compression algorithms using High-Efficiency Video Coding(HEVC) based Intra Profile and JPEG2000 on the public Cityscapes and ADE20K datasets, demonstrating the significant subjective quality improvement. …

And-Or Graph Model (AOG) google
This paper presents an explainable AI (XAI) system that provides explanations for its predictions. The system consists of two key components — namely, the prediction And-Or graph (AOG) model for recognizing and localizing concepts of interest in input data, and the XAI model for providing explanations to the user about the AOG’s predictions. In this work, we focus on the XAI model specified to interact with the user in natural language, whereas the AOG’s predictions are considered given and represented by the corresponding parse graphs (pg’s) of the AOG. Our XAI model takes pg’s as input and provides answers to the user’s questions using the following types of reasoning: direct evidence (e.g., detection scores), part-based inference (e.g., detected parts provide evidence for the concept asked), and other evidences from spatio-temporal context (e.g., constraints from the spatio-temporal surround). We identify several correlations between user’s questions and the XAI answers using Youtube Action dataset. …

StreamBox-HBM google
Stream analytics have an insatiable demand for memory and performance. Emerging hybrid memories combine commodity DDR4 DRAM with 3D-stacked High Bandwidth Memory (HBM) DRAM to meet such demands. However, achieving this promise is challenging because (1) HBM is capacity-limited and (2) HBM boosts performance best for sequential access and high parallelism workloads. At first glance, stream analytics appear a particularly poor match for HBM because they have high capacity demands and data grouping operations, their most demanding computations, use random access. This paper presents the design and implementation of StreamBox-HBM, a stream analytics engine that exploits hybrid memories to achieve scalable high performance. StreamBox-HBM performs data grouping with sequential access sorting algorithms in HBM, in contrast to random access hashing algorithms commonly used in DRAM. StreamBox-HBM solely uses HBM to store Key Pointer Array (KPA) data structures that contain only partial records (keys and pointers to full records) for grouping operations. It dynamically creates and manages prodigious data and pipeline parallelism, choosing when to allocate KPAs in HBM. It dynamically optimizes for both the high bandwidth and limited capacity of HBM, and the limited bandwidth and high capacity of standard DRAM. StreamBox-HBM achieves 110 million records per second and 238 GB/s memory bandwidth while effectively utilizing all 64 cores of Intel’s Knights Landing, a commercial server with hybrid memory. It outperforms stream engines with sequential access algorithms without KPAs by 7x and stream engines with random access algorithms by an order of magnitude in throughput. To the best of our knowledge, StreamBox-HBM is the first stream engine optimized for hybrid memories. …

TonY google
Training machine learning (ML) models on large datasets requires considerable computing power. To speed up training, it is typical to distribute training across several machines, often with specialized hardware like GPUs or TPUs. Managing a distributed training job is complex and requires dealing with resource contention, distributed configurations, monitoring, and fault tolerance. In this paper, we describe TonY, an open-source orchestrator for distributed ML jobs built at LinkedIn to address these challenges. …