zoNNscan google
The training of deep neural network classifiers results in decision boundaries which geometry is still not well understood. This is in direct relation with classification problems such as so called adversarial examples. We introduce zoNNscan, an index that is intended to inform on the boundary uncertainty (in terms of the presence of other classes) around one given input datapoint. It is based on confidence entropy, and is implemented through sampling in the multidimensional ball surrounding that input. We detail the zoNNscan index, give an algorithm for approximating it, and finally illustrate its benefits on four applications, including two important problems for the adoption of deep networks in critical systems: adversarial examples and corner case inputs. We highlight that zoNNscan exhibits significantly higher values than for standard inputs in those two problem classes. …

Compositional Coding for Collaborative Filtering google
Efficiency is crucial to the online recommender systems. Representing users and items as binary vectors for Collaborative Filtering (CF) can achieve fast user-item affinity computation in the Hamming space, in recent years, we have witnessed an emerging research effort in exploiting binary hashing techniques for CF methods. However, CF with binary codes naturally suffers from low accuracy due to limited representation capability in each bit, which impedes it from modeling complex structure of the data. In this work, we attempt to improve the efficiency without hurting the model performance by utilizing both the accuracy of real-valued vectors and the efficiency of binary codes to represent users/items. In particular, we propose the Compositional Coding for Collaborative Filtering (CCCF) framework, which not only gains better recommendation efficiency than the state-of-the-art binarized CF approaches but also achieves even higher accuracy than the real-valued CF method. Specifically, CCCF innovatively represents each user/item with a set of binary vectors, which are associated with a sparse real-value weight vector. Each value of the weight vector encodes the importance of the corresponding binary vector to the user/item. The continuous weight vectors greatly enhances the representation capability of binary codes, and its sparsity guarantees the processing speed. Furthermore, an integer weight approximation scheme is proposed to further accelerate the speed. Based on the CCCF framework, we design an efficient discrete optimization algorithm to learn its parameters. Extensive experiments on three real-world datasets show that our method outperforms the state-of-the-art binarized CF methods (even achieves better performance than the real-valued CF method) by a large margin in terms of both recommendation accuracy and efficiency. …

Coarse-to-Fine Network (C2F Net) google
Deep neural networks have seen tremendous success for different modalities of data including images, videos, and speech. This success has led to their deployment in mobile and embedded systems for real-time applications. However, making repeated inferences using deep networks on embedded systems poses significant challenges due to constrained resources (e.g., energy and computing power). To address these challenges, we develop a principled co-design approach. Building on prior work, we develop a formalism referred to as Coarse-to-Fine Networks (C2F Nets) that allow us to employ classifiers of varying complexity to make predictions. We propose a principled optimization algorithm to automatically configure C2F Nets for a specified trade-off between accuracy and energy consumption for inference. The key idea is to select a classifier on-the-fly whose complexity is proportional to the hardness of the input example: simple classifiers for easy inputs and complex classifiers for hard inputs. We perform comprehensive experimental evaluation using four different C2F Net architectures on multiple real-world image classification tasks. Our results show that optimized C2F Net can reduce the Energy Delay Product (EDP) by 27 to 60 percent with no loss in accuracy when compared to the baseline solution, where all predictions are made using the most complex classifier in C2F Net. …

Warping Resilient Time Series Embedding google
Time series are ubiquitous in real world problems and computing distance between two time series is often required in several learning tasks. Computing similarity between time series by ignoring variations in speed or warping is often encountered and dynamic time warping (DTW) is the state of the art. However DTW is not applicable in algorithms which require kernel or vectors. In this paper, we propose a mechanism named WaRTEm to generate vector embeddings of time series such that distance measures in the embedding space exhibit resilience to warping. Therefore, WaRTEm is more widely applicable than DTW. WaRTEm is based on a twin auto-encoder architecture and a training strategy involving warping operators for generating warping resilient embeddings for time series datasets. We evaluate the performance of WaRTEm and observed more than $20\%$ improvement over DTW in multiple real-world datasets. …

Advertisements