Two-Step Importance Weighting IL (2IWIL) google
Imitation learning (IL) aims to learn an optimal policy from demonstrations. However, such demonstrations are often imperfect since collecting optimal ones is costly. To effectively learn from imperfect demonstrations, we propose a novel approach that utilizes confidence scores, which describe the quality of demonstrations. More specifically, we propose two confidence-based IL methods, namely two-step importance weighting IL (2IWIL) and generative adversarial IL with imperfect demonstration and confidence (IC-GAIL). We show that confidence scores given only to a small portion of sub-optimal demonstrations significantly improve the performance of IL both theoretically and empirically. …

Cumulative Spectral Gradient google
In this paper, we propose a new measure to gauge the complexity of image classification problems. Given an annotated image dataset, our method computes a complexity measure called the cumulative spectral gradient (CSG) which strongly correlates with the test accuracy of convolutional neural networks (CNN). The CSG measure is derived from the probabilistic divergence between classes in a spectral clustering framework. We show that this metric correlates with the overall separability of the dataset and thus its inherent complexity. As will be shown, our metric can be used for dataset reduction, to assess which classes are more difficult to disentangle, and approximate the accuracy one could expect to get with a CNN. Results obtained on 11 datasets and three CNN models reveal that our method is more accurate and faster than previous complexity measures. …

DeepMutation google
Deep learning (DL) defines a new data-driven programming paradigm where the internal system logic is largely shaped by the training data. The standard way of evaluating DL models is to examine their performance on a test dataset. The quality of the test dataset is of great importance to gain confidence of the trained models. Using an inadequate test dataset, DL models that have achieved high test accuracy may still lack generality and robustness. In traditional software testing, mutation testing is a well-established technique for quality evaluation of test suites, which analyzes to what extent a test suite detects the injected faults. However, due to the fundamental difference between traditional software and deep learning-based software, traditional mutation testing techniques cannot be directly applied to DL systems. In this paper, we propose a mutation testing framework specialized for DL systems to measure the quality of test data. To do this, by sharing the same spirit of mutation testing in traditional software, we first define a set of source-level mutation operators to inject faults to the source of DL (i.e., training data and training programs). Then we design a set of model-level mutation operators that directly inject faults into DL models without a training process. Eventually, the quality of test data could be evaluated from the analysis on to what extent the injected faults could be detected. The usefulness of the proposed mutation testing techniques is demonstrated on two public datasets, namely MNIST and CIFAR-10, with three DL models. …

Signuology google
Signuology is defined as the study of sets of characteristic predictive signals contained within data in the form of combined features of the data that are characteristic of an observation of interest within the data. The terms data mining and data structure imply rigid and discrete characteristics. A signal has more flexibility, borrowing from ideas contained in the superposition principle in physics. One can take the same data and ask a difference question, a different dependent variable, and find a different signal; the data structure will be the same. Data structure as a high level concept appears to limit one’s thinking. Feature engineering is an activity within signuology. These signals allow for a flexibility not afforded in the thinking implied by the terms data structure and data mining. …

Advertisements