Fair-PG-Rank google
Conventional Learning-to-Rank (LTR) methods optimize the utility of the rankings to the users, but they are oblivious to their impact on the ranked items. However, there has been a growing understanding that the latter is important to consider for a wide range of ranking applications (e.g. online marketplaces, job placement, admissions). To address this need, we propose a general LTR framework that can optimize a wide range of utility metrics (e.g. NDCG) while satisfying fairness of exposure constraints with respect to the items. This framework expands the class of learnable ranking functions to stochastic ranking policies, which provides a language for rigorously expressing fairness specifications. Furthermore, we provide a new LTR algorithm called Fair-PG-Rank for directly searching the space of fair ranking policies via a policy-gradient approach. Beyond the theoretical evidence in deriving the framework and the algorithm, we provide empirical results on simulated and real-world datasets verifying the effectiveness of the approach in individual and group-fairness settings. …

Adaptive Sequence Submodularity google
In many machine learning applications, one needs to interactively select a sequence of items (e.g., recommending movies based on a user’s feedback) or make sequential decisions in certain orders (e.g., guiding an agent through a series of states). Not only do sequences already pose a dauntingly large search space, but we must take into account past observations, as well as the uncertainty of future outcomes. Without further structure, finding an optimal sequence is notoriously challenging, if not completely intractable. In this paper, we introduce adaptive sequence submodularity, a rich framework that generalizes the notion of submodularity to adaptive policies that explicitly consider sequential dependencies between items. We show that once such dependencies are encoded by a directed graph, an adaptive greedy policy is guaranteed to achieve a constant factor approximation guarantee, where the constant naturally depends on the structural properties of the underlying graph. Additionally, to demonstrate the practical utility of our results, we run experiments on Amazon product recommendation and Wikipedia link prediction tasks. …

Self-Ensembling GCN (SEGCN) google
Graph convolutional network (GCN) provides a powerful means for graph-based semi-supervised tasks. However, as a localized first-order approximation of spectral graph convolution, the classic GCN can not take full advantage of unlabeled data, especially when the unlabeled node is far from labeled ones. To capitalize on the information from unlabeled nodes to boost the training for GCN, we propose a novel framework named Self-Ensembling GCN (SEGCN), which marries GCN with Mean Teacher – another powerful model in semi-supervised learning. SEGCN contains a student model and a teacher model. As a student, it not only learns to correctly classify the labeled nodes, but also tries to be consistent with the teacher on unlabeled nodes in more challenging situations, such as a high dropout rate and graph collapse. As a teacher, it averages the student model weights and generates more accurate predictions to lead the student. In such a mutual-promoting process, both labeled and unlabeled samples can be fully utilized for backpropagating effective gradients to train GCN. In three article classification tasks, i.e. Citeseer, Cora and Pubmed, we validate that the proposed method matches the state of the arts in the classification accuracy. …

Change Surfaces google
Identifying changes in model parameters is fundamental in machine learning and statistics. However, standard changepoint models are limited in expressiveness, often addressing unidimensional problems and assuming instantaneous changes. We introduce change surfaces as a multidimensional and highly expressive generalization of changepoints. We provide a model-agnostic formalization of change surfaces, illustrating how they can provide variable, heterogeneous, and non-monotonic rates of change across multiple dimensions. Additionally, we show how change surfaces can be used for counterfactual prediction. As a concrete instantiation of the change surface framework, we develop Gaussian Process Change Surfaces (GPCS). We demonstrate counterfactual prediction with Bayesian posterior mean and credible sets, as well as massive scalability by introducing novel methods for additive non-separable kernels. Using two large spatio-temporal datasets we employ GPCS to discover and characterize complex changes that can provide scientific and policy relevant insights. Specifically, we analyze twentieth century measles incidence across the United States and discover previously unknown heterogeneous changes after the introduction of the measles vaccine. Additionally, we apply the model to requests for lead testing kits in New York City, discovering distinct spatial and demographic patterns. …

Advertisements