Testing with Concept Activation Vectors (TCAV) google
The interpretation of deep learning models is a challenge due to their size, complexity, and often opaque internal state. In addition, many systems, such as image classifiers, operate on low-level features rather than high-level concepts. To address these challenges, we introduce Concept Activation Vectors (CAVs), which provide an interpretation of a neural net’s internal state in terms of human-friendly concepts. The key idea is to view the high-dimensional internal state of a neural net as an aid, not an obstacle. We show how to use CAVs as part of a technique, Testing with CAVs (TCAV), that uses directional derivatives to quantify the degree to which a user-defined concept is important to a classification result–for example, how sensitive a prediction of ‘zebra’ is to the presence of stripes. Using the domain of image classification as a testing ground, we describe how CAVs may be used to explore hypotheses and generate insights for a standard image classification network as well as a medical application.
TCAV: Interpretability Beyond Feature Attribution

Genie google
To understand diverse natural language commands, virtual assistants today are trained with numerous labor-intensive, manually annotated sentences. This paper presents a methodology and the Genie toolkit that can handle new compound commands with significantly less manual effort. We advocate formalizing the capability of virtual assistants with a Virtual Assistant Programming Language (VAPL) and using a neural semantic parser to translate natural language into VAPL code. Genie needs only a small realistic set of input sentences for validating the neural model. Developers write templates to synthesize data; Genie uses crowdsourced paraphrases and data augmentation, along with the synthesized data, to train a semantic parser. We also propose design principles that make VAPL languages amenable to natural language translation. We apply these principles to revise ThingTalk, the language used by the Almond virtual assistant. We use Genie to build the first semantic parser that can support compound virtual assistants commands with unquoted free-form parameters. Genie achieves a 62% accuracy on realistic user inputs. We demonstrate Genie’s generality by showing a 19% and 31% improvement over the previous state of the art on a music skill, aggregate functions, and access control. …

Stochastically Shared Embedding (SSE) google
In deep neural nets, lower level embedding layers account for a large portion of the total number of parameters. Tikhonov regularization, graph-based regularization, and hard parameter sharing are approaches that introduce explicit biases into training in a hope to reduce statistical complexity. Alternatively, we propose stochastically shared embeddings (SSE), a data-driven approach to regularizing embedding layers, which stochastically transitions between embeddings during stochastic gradient descent (SGD). Because SSE integrates seamlessly with existing SGD algorithms, it can be used with only minor modifications when training large scale neural networks. We develop two versions of SSE: SSE-Graph using knowledge graphs of embeddings; SSE-SE using no prior information. We provide theoretical guarantees for our method and show its empirical effectiveness on 6 distinct tasks, from simple neural networks with one hidden layer in recommender systems, to the transformer and BERT in natural languages. We find that when used along with widely-used regularization methods such as weight decay and dropout, our proposed SSE can further reduce overfitting, which often leads to more favorable generalization results. …

Hierarchical Methods of Moments google
Spectral methods of moments provide a powerful tool for learning the parameters of latent variable models. Despite their theoretical appeal, the applicability of these methods to real data is still limited due to a lack of robustness to model misspecification. In this paper we present a hierarchical approach to methods of moments to circumvent such limitations. Our method is based on replacing the tensor decomposition step used in previous algorithms with approximate joint diagonalization. Experiments on topic modeling show that our method outperforms previous tensor decomposition methods in terms of speed and model quality. …