Estimation of Distribution Algorithm (EDA) google
Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding the uniform distribution over admissible solutions and ending with the model that generates only the global optima. EDAs belong to the class of evolutionary algorithms. The main difference between EDAs and most conventional evolutionary algorithms is that evolutionary algorithms generate new candidate solutions using an implicit distribution defined by one or more variation operators, whereas EDAs use an explicit probability distribution encoded by a Bayesian network, a multivariate normal distribution, or another model class. Similarly as other evolutionary algorithms, EDAs can be used to solve optimization problems defined over a number of representations from vectors to LISP style S expressions, and the quality of candidate solutions is often evaluated using one or more objective functions.
Level-Based Analysis of the Univariate Marginal Distribution Algorithm


Abnormal Event Detection Network (AED-Net) google
It is challenging to detect the anomaly in crowded scenes for quite a long time. In this paper, a self-supervised framework, abnormal event detection network (AED-Net), which is composed of PCAnet and kernel principal component analysis (kPCA), is proposed to address this problem. Using surveillance video sequences of different scenes as raw data, PCAnet is trained to extract high-level semantics of crowd’s situation. Next, kPCA,a one-class classifier, is trained to determine anomaly of the scene. In contrast to some prevailing deep learning methods,the framework is completely self-supervised because it utilizes only video sequences in a normal situation. Experiments of global and local abnormal event detection are carried out on UMN and UCSD datasets, and competitive results with higher EER and AUC compared to other state-of-the-art methods are observed. Furthermore, by adding local response normalization (LRN) layer, we propose an improvement to original AED-Net. And it is proved to perform better by promoting the framework’s generalization capacity according to the experiments. …

Fixed-Size Ordinally Forgetting Encoding (FOFE) google
Question answering over knowledge base (KB-QA) has recently become a popular research topic in NLP. One popular way to solve the KB-QA problem is to make use of a pipeline of several NLP modules, including entity discovery and linking (EDL) and relation detection. Recent success on KB-QA task usually involves complex network structures with sophisticated heuristics. Inspired by a previous work that builds a strong KB-QA baseline, we propose a simple but general neural model composed of fixed-size ordinally forgetting encoding (FOFE) and deep neural networks, called FOFE-net to solve KB-QA problem at different stages. For evaluation, we use two popular KB-QA datasets, SimpleQuestions and WebQSP, and a newly created dataset, FreebaseQA. The experimental results show that FOFE-net performs well on KB-QA subtasks, entity discovery and linking (EDL) and relation detection, and in turn pushing overall KB-QA system to achieve strong results on all datasets. …

Q-Graph google
Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in parallel on a shared graph. These applications generate a dynamic number of localized queries around query hotspots such as popular urban areas. However, existing graph processing systems are not yet tailored towards these properties: The employed methods for graph partitioning and synchronization management disregard query locality and dynamism which leads to high query latency. To this end, we propose the system Q-Graph for multi-query graph analysis that considers query locality on three levels. (i) The query-aware graph partitioning algorithm Q-cut maximizes query locality to reduce communication overhead. (ii) The method for synchronization management, called hybrid barrier synchronization, allows for full exploitation of local queries spanning only a subset of partitions. (iii) Both methods adapt at runtime to changing query workloads in order to maintain and exploit locality. Our experiments show that Q-cut reduces average query latency by up to 57 percent compared to static query-agnostic partitioning algorithms. …

Advertisements