Dilated Convolution google
The idea of Dilated Convolution is come from the wavelet decomposition. It is also called ‘atrous convolution’, ‘algorithme à trous’ and ‘hole algorithm’. Thus, any ideas from the past are still useful if we can turn them into the deep learning framework. …

Margin-Based Pareto Deep Ensemble Pruning (MBPEP) google
Machine learning algorithms have been effectively applied into various real world tasks. However, it is difficult to provide high-quality machine learning solutions to accommodate an unknown distribution of input datasets; this difficulty is called the uncertainty prediction problems. In this paper, a margin-based Pareto deep ensemble pruning (MBPEP) model is proposed. It achieves the high-quality uncertainty estimation with a small value of the prediction interval width (MPIW) and a high confidence of prediction interval coverage probability (PICP) by using deep ensemble networks. In addition to these networks, unique loss functions are proposed, and these functions make the sub-learners available for standard gradient descent learning. Furthermore, the margin criterion fine-tuning-based Pareto pruning method is introduced to optimize the ensembles. Several experiments including predicting uncertainties of classification and regression are conducted to analyze the performance of MBPEP. The experimental results show that MBPEP achieves a small interval width and a low learning error with an optimal number of ensembles. For the real-world problems, MBPEP performs well on input datasets with unknown distributions datasets incomings and improves learning performance on a multi task problem when compared to that of each single model. …

IceBreaker google
Internet has brought about a tremendous increase in content of all forms and, in that, video content constitutes the major backbone of the total content being published as well as watched. Thus it becomes imperative for video recommendation engines such as Hulu to look for novel and innovative ways to recommend the newly added videos to their users. However, the problem with new videos is that they lack any sort of metadata and user interaction so as to be able to rate the videos for the consumers. To this effect, this paper introduces the several techniques we develop for the Content Based Video Relevance Prediction (CBVRP) Challenge being hosted by Hulu for the ACM Multimedia Conference 2018. We employ different architectures on the CBVRP dataset to make use of the provided frame and video level features and generate predictions of videos that are similar to the other videos. We also implement several ensemble strategies to explore complementarity between both the types of provided features. The obtained results are encouraging and will impel the boundaries of research for multimedia based video recommendation systems. …

Online Event-Detection Problem (OEDP) google
Given a stream $S = (s_1, s_2, …, s_N)$, a $\phi$-heavy hitter is an item $s_i$ that occurs at least $\phi N$ times in $S$. The problem of finding heavy-hitters has been extensively studied in the database literature. In this paper, we study a related problem. We say that there is a $\phi$-event at time $t$ if $s_t$ occurs exactly $\phi N$ times in $(s_1, s_2, …, s_t)$. Thus, for each $\phi$-heavy hitter there is a single $\phi$-event which occurs when its count reaches the reporting threshold $\phi N$. We define the online event-detection problem (OEDP) as: given $\phi$ and a stream $S$, report all $\phi$-events as soon as they occur. Many real-world monitoring systems demand event detection where all events must be reported (no false negatives), in a timely manner, with no non-events reported (no false positives), and a low reporting threshold. As a result, the OEDP requires a large amount of space (Omega(N) words) and is not solvable in the streaming model or via standard sampling-based approaches. Since OEDP requires large space, we focus on cache-efficient algorithms in the external-memory model. We provide algorithms for the OEDP that are within a log factor of optimal. Our algorithms are tunable: its parameters can be set to allow for a bounded false-positives and a bounded delay in reporting. None of our relaxations allow false negatives since reporting all events is a strict requirement of our applications. Finally, we show improved results when the count of items in the input stream follows a power-law distribution. …

Advertisements