ASPIRE google
Malware detection is an ever-present challenge for all organizational gatekeepers. Organizations often deploy numerous different malware detection tools, and then combine their output to produce a final classification for an inspected file. This approach has two significant drawbacks. First, it requires large amounts of computing resources and time since every incoming file needs to be analyzed by all detectors. Secondly, it is difficult to accurately and dynamically enforce a predefined security policy that comports with the needs of each organization (e.g., how tolerant is the organization to false negatives and false positives). In this study we propose ASPIRE, a reinforcement learning (RL)-based method for malware detection. Our approach receives the organizational policy — defined solely by the perceived costs of correct/incorrect classifications and of computing resources — and then dynamically assigns detection tools and sets the detection threshold for each inspected file. We demonstrate the effectiveness and robustness of our approach by conducting an extensive evaluation on multiple organizational policies. ASPIRE performed well in all scenarios, even achieving near-optimal accuracy of 96.21% (compared to an optimum of 96.86%) at approximately 20% of the running time of this baseline. …

Banzhaf Random Forests (BRF) google
Random forests are a type of ensemble method which makes predictions by combining the results of several independent trees. However, the theory of random forests has long been outpaced by their application. In this paper, we propose a novel random forests algorithm based on cooperative game theory. Banzhaf power index is employed to evaluate the power of each feature by traversing possible feature coalitions. Unlike the previously used information gain rate of information theory, which simply chooses the most informative feature, the Banzhaf power index can be considered as a metric of the importance of each feature on the dependency among a group of features. More importantly, we have proved the consistency of the proposed algorithm, named Banzhaf random forests (BRF). This theoretical analysis takes a step towards narrowing the gap between the theory and practice of random forests for classification problems. Experiments on several UCI benchmark data sets show that BRF is competitive with state-of-the-art classifiers and dramatically outperforms previous consistent random forests. Particularly, it is much more efficient than previous consistent random forests. …

State-Denoised Recurrent Neural Network (SDRNN) google
Recurrent neural networks (RNNs) are difficult to train on sequence processing tasks, not only because input noise may be amplified through feedback, but also because any inaccuracy in the weights has similar consequences as input noise. We describe a method for denoising the hidden state during training to achieve more robust representations thereby improving generalization performance. Attractor dynamics are incorporated into the hidden state to `clean up’ representations at each step of a sequence. The attractor dynamics are trained through an auxillary denoising loss to recover previously experienced hidden states from noisy versions of those states. This state-denoised recurrent neural network {SDRNN} performs multiple steps of internal processing for each external sequence step. On a range of tasks, we show that the SDRNN outperforms a generic RNN as well as a variant of the SDRNN with attractor dynamics on the hidden state but without the auxillary loss. We argue that attractor dynamics—and corresponding connectivity constraints—are an essential component of the deep learning arsenal and should be invoked not only for recurrent networks but also for improving deep feedforward nets and intertask transfer. …

Deep Tensor Adversarial Generative net (TGAN) google
Deep generative models have been successfully applied to many applications. However, existing works experience limitations when generating large images (the literature usually generates small images, e.g. 32 * 32 or 128 * 128). In this paper, we propose a novel scheme, called deep tensor adversarial generative nets (TGAN), that generates large high-quality images by exploring tensor structures. Essentially, the adversarial process of TGAN takes place in a tensor space. First, we impose tensor structures for concise image representation, which is superior in capturing the pixel proximity information and the spatial patterns of elementary objects in images, over the vectorization preprocess in existing works. Secondly, we propose TGAN that integrates deep convolutional generative adversarial networks and tensor super-resolution in a cascading manner, to generate high-quality images from random distributions. More specifically, we design a tensor super-resolution process that consists of tensor dictionary learning and tensor coefficients learning. Finally, on three datasets, the proposed TGAN generates images with more realistic textures, compared with state-of-the-art adversarial autoencoders. The size of the generated images is increased by over 8.5 times, namely 374 * 374 in PASCAL2. …

Advertisements