Hindsight Generative Adversarial Imitation Learning (HGAIL) google
Compared to reinforcement learning, imitation learning (IL) is a powerful paradigm for training agents to learn control policies efficiently from expert demonstrations. However, in most cases, obtaining demonstration data is costly and laborious, which poses a significant challenge in some scenarios. A promising alternative is to train agent learning skills via imitation learning without expert demonstrations, which, to some extent, would extremely expand imitation learning areas. To achieve such expectation, in this paper, we propose Hindsight Generative Adversarial Imitation Learning (HGAIL) algorithm, with the aim of achieving imitation learning satisfying no need of demonstrations. Combining hindsight idea with the generative adversarial imitation learning (GAIL) framework, we realize implementing imitation learning successfully in cases of expert demonstration data are not available. Experiments show that the proposed method can train policies showing comparable performance to current imitation learning methods. Further more, HGAIL essentially endows curriculum learning mechanism which is critical for learning policies. …

Spike-Triggered non-Negative Matrix Factorization (STNMF) google
Neurons in sensory systems often pool inputs over arrays of presynaptic cells, giving rise to functional subunits inside a neuron´s receptive field. The organization of these subunits provides a signature of the neuron´s presynaptic functional connectivity and determines how the neuron integrates sensory stimuli. Here we introduce the method of spike-triggered non-negative matrix factorization for detecting the layout of subunits within a neuron´s receptive field. The method only requires the neuron´s spiking responses under finely structured sensory stimulation and is therefore applicable to large populations of simultaneously recorded neurons. Applied to recordings from ganglion cells in the salamander retina, the method retrieves the receptive fields of presynaptic bipolar cells, as verified by simultaneous bipolar and ganglion cell recordings. The identified subunit layouts allow improved predictions of ganglion cell responses to natural stimuli and reveal shared bipolar cell input into distinct types of ganglion cells.
Characterizing Neuronal Circuits with Spike-triggered Non-negative Matrix Factorization

BLOSSOM google
We develop the first Bayesian Optimization algorithm, BLOSSOM, which selects between multiple alternative acquisition functions and traditional local optimization at each step. This is combined with a novel stopping condition based on expected regret. This pairing allows us to obtain the best characteristics of both local and Bayesian optimization, making efficient use of function evaluations while yielding superior convergence to the global minimum on a selection of optimization problems, and also halting optimization once a principled and intuitive stopping condition has been fulfilled. …

Recurrent Kalman Network (RKN) google
In order to integrate uncertainty estimates into deep time-series modelling, Kalman Filters (KFs) (Kalman et al., 1960) have been integrated with deep learning models, however, such approaches typically rely on approximate inference techniques such as variational inference which makes learning more complex and often less scalable due to approximation errors. We propose a new deep approach to Kalman filtering which can be learned directly in an end-to-end manner using backpropagation without additional approximations. Our approach uses a high-dimensional factorized latent state representation for which the Kalman updates simplify to scalar operations and thus avoids hard to backpropagate, computationally heavy and potentially unstable matrix inversions. Moreover, we use locally linear dynamic models to efficiently propagate the latent state to the next time step. The resulting network architecture, which we call Recurrent Kalman Network (RKN), can be used for any time-series data, similar to a LSTM (Hochreiter & Schmidhuber, 1997) but uses an explicit representation of uncertainty. As shown by our experiments, the RKN obtains much more accurate uncertainty estimates than an LSTM or Gated Recurrent Units (GRUs) (Cho et al., 2014) while also showing a slightly improved prediction performance and outperforms various recent generative models on an image imputation task. …