Concentration Free Outlier Factor google
We present a novel notion of outlier, called the Concentration Free Outlier Factor, or CFOF. As a main contribution, we formalize the notion of concentration of outlier scores and theoretically prove that CFOF does not concentrate in the Euclidean space for any arbitrary large dimensionality. To the best of our knowledge, there are no other proposals of data analysis measures related to the Euclidean distance for which it has been provided theoretical evidence that they are immune to the concentration effect. We determine the closed form of the distribution of CFOF scores in arbitrarily large dimensionalities and show that the CFOF score of a point depends on its squared norm standard score and on the kurtosis of the data distribution, thus providing a clear and statistically founded characterization of this notion. Moreover, we leverage this closed form to provide evidence that the definition does not suffer of the hubness problem affecting other measures. We prove that the number of CFOF outliers coming from each cluster is proportional to cluster size and kurtosis, a property that we call semi-locality. We determine that semi-locality characterizes existing reverse nearest neighbor-based outlier definitions, thus clarifying the exact nature of their observed local behavior. We also formally prove that classical distance-based and density-based outliers concentrate both for bounded and unbounded sample sizes and for fixed and variable values of the neighborhood parameter. We introduce the fast-CFOF algorithm for detecting outliers in large high-dimensional dataset. The algorithm has linear cost, supports multi-resolution analysis, and is embarrassingly parallel. Experiments highlight that the technique is able to efficiently process huge datasets and to deal even with large values of the neighborhood parameter, to avoid concentration, and to obtain excellent accuracy. …

BoTorch google
BoTorch (pronounced like ‘blow-torch’) is a library for Bayesian Optimization research built on top of PyTorch, and is part of the PyTorch ecosystem. Bayesian Optimization (BayesOpt) is an established technique for sequential optimization of costly-to-evaluate black-box functions. It can be applied to a wide variety of problems, including hyperparameter optimization for machine learning algorithms, A/B testing, as well as many scientific and engineering problems. BoTorch is best used in tandem with Ax, Facebook’s open-source adaptive experimentation platform, which provides an easy-to-use interface for defining, managing and running sequential experiments, while handling (meta-)data management, transformations, and systems integration. Users who just want an easy-to-use suite for Bayesian Optimization should start with Ax. …

Stein Variational Autoencoder google
A new method for learning variational autoencoders is developed, based on an application of Stein’s operator. The framework represents the encoder as a deep nonlinear function through which samples from a simple distribution are fed. One need not make parametric assumptions about the form of the encoder distribution, and performance is further enhanced by integrating the proposed encoder with importance sampling. Example results are demonstrated across multiple unsupervised and semi-supervised problems, including semi-supervised analysis of the ImageNet data, demonstrating the scalability of the model to large datasets. …

Multi-Modal Knowledge Graph (MMKG) google
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types. …