Mask Scoring R-CNN google
Letting a deep network be aware of the quality of its own predictions is an interesting yet important problem. In the task of instance segmentation, the confidence of instance classification is used as mask quality score in most instance segmentation frameworks. However, the mask quality, quantified as the IoU between the instance mask and its ground truth, is usually not well correlated with classification score. In this paper, we study this problem and propose Mask Scoring R-CNN which contains a network block to learn the quality of the predicted instance masks. The proposed network block takes the instance feature and the corresponding predicted mask together to regress the mask IoU. The mask scoring strategy calibrates the misalignment between mask quality and mask score, and improves instance segmentation performance by prioritizing more accurate mask predictions during COCO AP evaluation. By extensive evaluations on the COCO dataset, Mask Scoring R-CNN brings consistent and noticeable gain with different models, and outperforms the state-of-the-art Mask R-CNN. We hope our simple and effective approach will provide a new direction for improving instance segmentation. The source code of our method is available at \url{https://…/maskscoring_rcnn}.

EvalAI google
We introduce EvalAI, an open source platform for evaluating and comparing machine learning (ML) and artificial intelligence algorithms (AI) at scale. EvalAI is built to provide a scalable solution to the research community to fulfill the critical need of evaluating machine learning models and agents acting in an environment against annotations or with a human-in-the-loop. This will help researchers, students, and data scientists to create, collaborate, and participate in AI challenges organized around the globe. By simplifying and standardizing the process of benchmarking these models, EvalAI seeks to lower the barrier to entry for participating in the global scientific effort to push the frontiers of machine learning and artificial intelligence, thereby increasing the rate of measurable progress in this domain. …

Comparison-Based Random Forest google
Assume we are given a set of items from a general metric space, but we neither have access to the representation of the data nor to the distances between data points. Instead, suppose that we can actively choose a triplet of items (A,B,C) and ask an oracle whether item A is closer to item B or to item C. In this paper, we propose a novel random forest algorithm for regression and classification that relies only on such triplet comparisons. In the theory part of this paper, we establish sufficient conditions for the consistency of such a forest. In a set of comprehensive experiments, we then demonstrate that the proposed random forest is efficient both for classification and regression. In particular, it is even competitive with other methods that have direct access to the metric representation of the data. …

Complementary Recommendations Using Adversarial Feature Transformer (CRAFT) google
Traditional approaches for complementary product recommendations rely on behavioral and non-visual data such as customer co-views or co-buys. However, certain domains such as fashion are primarily visual. We propose a framework that harnesses visual cues in an unsupervised manner to learn the distribution of co-occurring complementary items in real world images. Our model learns a non-linear transformation between the two manifolds of source and target complementary item categories (e.g., tops and bottoms in outfits). Given a large dataset of images containing instances of co-occurring object categories, we train a generative transformer network directly on the feature representation space by casting it as an adversarial optimization problem. Such a conditional generative model can produce multiple novel samples of complementary items (in the feature space) for a given query item. The final recommendations are selected from the closest real world examples to the synthesized complementary features. We apply our framework to the task of recommending complementary tops for a given bottom clothing item. The recommendations made by our system are diverse, and are favored by human experts over the baseline approaches. …

Advertisements