Distributed Cooperative Logistics Platform (DCLP) google
Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work. …

Diverse Online Feature Selection google
Online feature selection has been an active research area in recent years. We propose a novel diverse online feature selection method based on Determinantal Point Processes (DPP). Our model aims to provide diverse features which can be composed in either a supervised or unsupervised framework. The framework aims to promote diversity based on the kernel produced on a feature level, through at most three stages: feature sampling, local criteria and global criteria for feature selection. In the feature sampling, we sample incoming stream of features using conditional DPP. The local criteria is used to assess and select streamed features (i.e. only when they arrive), we use unsupervised scale invariant methods to remove redundant features and optionally supervised methods to introduce label information to assess relevant features. Lastly, the global criteria uses regularization methods to select a global optimal subset of features. This three stage procedure continues until there are no more features arriving or some predefined stopping condition is met. We demonstrate based on experiments conducted on that this approach yields better compactness, is comparable and in some instances outperforms other state-of-the-art online feature selection methods. …

Pairwise Augmented GAN google
We propose a novel autoencoding model called Pairwise Augmented GANs. We train a generator and an encoder jointly and in an adversarial manner. The generator network learns to sample realistic objects. In turn, the encoder network at the same time is trained to map the true data distribution to the prior in latent space. To ensure good reconstructions, we introduce an augmented adversarial reconstruction loss. Here we train a discriminator to distinguish two types of pairs: an object with its augmentation and the one with its reconstruction. We show that such adversarial loss compares objects based on the content rather than on the exact match. We experimentally demonstrate that our model generates samples and reconstructions of quality competitive with state-of-the-art on datasets MNIST, CIFAR10, CelebA and achieves good quantitative results on CIFAR10. …

Advertisements