Homographic Adaptation google
This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection accuracy and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to strong interest point repeatability on the HPatches dataset and outperforms traditional descriptors such as ORB and SIFT on point matching accuracy and on the task of homography estimation. …

Deep k-Means google
The current trend of pushing CNNs deeper with convolutions has created a pressing demand to achieve higher compression gains on CNNs where convolutions dominate the computation and parameter amount (e.g., GoogLeNet, ResNet and Wide ResNet). Further, the high energy consumption of convolutions limits its deployment on mobile devices. To this end, we proposed a simple yet effective scheme for compressing convolutions though applying k-means clustering on the weights, compression is achieved through weight-sharing, by only recording $K$ cluster centers and weight assignment indexes. We then introduced a novel spectrally relaxed $k$-means regularization, which tends to make hard assignments of convolutional layer weights to $K$ learned cluster centers during re-training. We additionally propose an improved set of metrics to estimate energy consumption of CNN hardware implementations, whose estimation results are verified to be consistent with previously proposed energy estimation tool extrapolated from actual hardware measurements. We finally evaluated Deep $k$-Means across several CNN models in terms of both compression ratio and energy consumption reduction, observing promising results without incurring accuracy loss. The code is available at https://…/Deep-K-Means
Deep $k$-Means: Jointly Clustering with $k$-Means and Learning Representations


Visual Analytics google
Visual analytics is “the science of analytical reasoning facilitated by visual interactive interfaces.” It can attack certain problems whose size, complexity, and need for closely coupled human and machine analysis may make them otherwise intractable. Visual analytics advances science and technology developments in analytical reasoning, interaction, data transformations and representations for computation and visualization, analytic reporting, and technology transition. As a research agenda, visual analytics brings together several scientific and technical communities from computer science, information visualization, cognitive and perceptual sciences, interactive design, graphic design, and social sciences. …

Advertisements