FearNet google
Incremental class learning involves sequentially learning classes in bursts of examples from the same class. This violates the assumptions that underlie methods for training standard deep neural networks, and will cause them to suffer from catastrophic forgetting. Arguably, the best method for incremental class learning is iCaRL, but it requires storing training examples for each class, making it challenging to scale. Here, we propose FearNet for incremental class learning. FearNet is a generative model that does not store previous examples, making it memory efficient. FearNet uses a brain-inspired dual-memory system in which new memories are consolidated from a network for recent memories inspired by the mammalian hippocampal complex to a network for long-term storage inspired by medial prefrontal cortex. Memory consolidation is inspired by mechanisms that occur during sleep. FearNet also uses a module inspired by the basolateral amygdala for determining which memory system to use for recall. FearNet achieves state-of-the-art performance at incremental class learning on image (CIFAR-100, CUB-200) and audio classification (AudioSet) benchmarks. …

Fiducial Inference google
Fiducial inference is one of a number of different types of statistical inference. These are rules, intended for general application, by which conclusions can be drawn from samples of data. In modern statistical practice, attempts to work with fiducial inference have fallen out of fashion in favour of frequentist inference, Bayesian inference and decision theory. However, fiducial inference is important in the history of statistics since its development led to the parallel development of concepts and tools in theoretical statistics that are widely used. Some current research in statistical methodology is either explicitly linked to fiducial inference or is closely connected to it.
Multivariate Subjective Fiducial Inference


Robust Adversarial Perturbation (R-AP) google
Adversarial noises are useful tools to probe the weakness of deep learning based computer vision algorithms. In this paper, we describe a robust adversarial perturbation (R-AP) method to attack deep proposal-based object detectors and instance segmentation algorithms. Our method focuses on attacking the common component in these algorithms, namely Region Proposal Network (RPN), to universally degrade their performance in a black-box fashion. To do so, we design a loss function that combines a label loss and a novel shape loss, and optimize it with respect to image using a gradient based iterative algorithm. Evaluations are performed on the MS COCO 2014 dataset for the adversarial attacking of 6 state-of-the-art object detectors and 2 instance segmentation algorithms. Experimental results demonstrate the efficacy of the proposed method. …

Advertisements