SimBlock google
Blockchain, which is a technology for distributedly managing ledger information over multiple nodes without a centralized system, has elicited increasing attention. Performing experiments on actual blockchains are difficult because a large number of nodes in wide areas are necessary. In this study, we developed a blockchain network simulator SimBlock for such experiments. Unlike the existing simulators, SimBlock can easily change behavior of node, so that it enables to investigate the influence of nodes’ behavior on blockchains. We compared some simulation results with the measured values in actual blockchains to demonstrate the validity of this simulator. Furthermore, to show practical usage, we conducted two experiments which clarify the influence of neighbor node selection algorithms and relay networks on the block propagation time. The simulator could depict the effects of the two techniques on block propagation time. The simulator will be publicly available in a few months. …

Implicit Policy google
We introduce Implicit Policy, a general class of expressive policies that can flexibly represent complex action distributions in reinforcement learning, with efficient algorithms to compute entropy regularized policy gradients. We empirically show that, despite its simplicity in implementation, entropy regularization combined with a rich policy class can attain desirable properties displayed under maximum entropy reinforcement learning framework, such as robustness and multi-modality. …

Semantic Rectifying Generative Adversarial Network (SR-GAN) google
The existing Zero-Shot learning (ZSL) methods may suffer from the vague class attributes that are highly overlapped for different classes. Unlike these methods that ignore the discrimination among classes, in this paper, we propose to classify unseen image by rectifying the semantic space guided by the visual space. First, we pre-train a Semantic Rectifying Network (SRN) to rectify semantic space with a semantic loss and a rectifying loss. Then, a Semantic Rectifying Generative Adversarial Network (SR-GAN) is built to generate plausible visual feature of unseen class from both semantic feature and rectified semantic feature. To guarantee the effectiveness of rectified semantic features and synthetic visual features, a pre-reconstruction and a post reconstruction networks are proposed, which keep the consistency between visual feature and semantic feature. Experimental results demonstrate that our approach significantly outperforms the state-of-the-arts on four benchmark datasets. …

Advertisements