Eigenvalue Corrected Noisy Natural Gradient google
Variational Bayesian neural networks combine the flexibility of deep learning with Bayesian uncertainty estimation. However, inference procedures for flexible variational posteriors are computationally expensive. A recently proposed method, noisy natural gradient, is a surprisingly simple method to fit expressive posteriors by adding weight noise to regular natural gradient updates. Noisy K-FAC is an instance of noisy natural gradient that fits a matrix-variate Gaussian posterior with minor changes to ordinary K-FAC. Nevertheless, a matrix-variate Gaussian posterior does not capture an accurate diagonal variance. In this work, we extend on noisy K-FAC to obtain a more flexible posterior distribution called eigenvalue corrected matrix-variate Gaussian. The proposed method computes the full diagonal re-scaling factor in Kronecker-factored eigenbasis. Empirically, our approach consistently outperforms existing algorithms (e.g., noisy K-FAC) on regression and classification tasks. …

Apache Airflow google
Airflow is a platform to programmatically author, schedule and monitor workflows. Use airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed. When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative. …

Partial Area Under a Receiver Operating Characteristic (pAUC) google
We propose a method for maximizing a partial area under a receiver operating characteristic (ROC) curve (pAUC) for binary classification tasks. In binary classification tasks, accuracy is the most commonly used as a measure of classifier performance. In some applications such as anomaly detection and diagnostic testing, accuracy is not an appropriate measure since prior probabilties are often greatly biased. Although in such cases the pAUC has been utilized as a performance measure, few methods have been proposed for directly maximizing the pAUC. This optimization is achieved by using a scoring function. The conventional approach utilizes a linear function as the scoring function. In contrast we newly introduce nonlinear scoring functions for this purpose. Specifically, we present two types of nonlinear scoring functions based on generative models and deep neural networks. We show experimentally that nonlinear scoring fucntions improve the conventional methods through the application of a binary classification of real and bogus objects obtained with the Hyper Suprime-Cam on the Subaru telescope. …

Advertisements