Kraljic Matrix google
The Kraljic Matrix works by by mapping the profit impact of a product on one axis, and our vulnerability to the supplier’s disappearance on the other. It essentially provides a portfolio management approach to managing an organization’s many suppliers. This enables us to see which relationships are important so we can focus on strengthing these, as well as identifying less important relationships where we might employ traditional supplier management techniques such as offshoring. The Kraljic matrix help us in the first step of supplier management – identifying important suppliers. How you then actually manage those suppliers is up to you. …

Asynchronous Stochastic Variational Inference google
Stochastic variational inference (SVI) employs stochastic optimization to scale up Bayesian computation to massive data. Since SVI is at its core a stochastic gradient-based algorithm, horizontal parallelism can be harnessed to allow larger scale inference. We propose a lock-free parallel implementation for SVI which allows distributed computations over multiple slaves in an asynchronous style. We show that our implementation leads to linear speed-up while guaranteeing an asymptotic ergodic convergence rate $O(1/\sqrt(T)$ ) given that the number of slaves is bounded by $\sqrt(T)$ ($T$ is the total number of iterations). The implementation is done in a high-performance computing (HPC) environment using message passing interface (MPI) for python (MPI4py). The extensive empirical evaluation shows that our parallel SVI is lossless, performing comparably well to its counterpart serial SVI with linear speed-up. …

Cross-Lipschitz Extreme Value for nEtwork Robustness (CLEVER) google
CLEVER (Cross-Lipschitz Extreme Value for nEtwork Robustness) is an Extreme Value Theory (EVT) based robustness score for large-scale deep neural networks (DNNs). In this paper, we propose two extensions on this robustness score. First, we provide a new formal robustness guarantee for classifier functions that are twice differentiable. We apply extreme value theory on the new formal robustness guarantee and the estimated robustness is called second-order CLEVER score. Second, we discuss how to handle gradient masking, a common defensive technique, using CLEVER with Backward Pass Differentiable Approximation (BPDA). With BPDA applied, CLEVER can evaluate the intrinsic robustness of neural networks of a broader class — networks with non-differentiable input transformations. We demonstrate the effectiveness of CLEVER with BPDA in experiments on a 121-layer Densenet model trained on the ImageNet dataset. …