COnstrained PARAFAC2 (COPA) google
PARAFAC2 has demonstrated success in modeling irregular tensors, where the tensor dimensions vary across one of the modes. An example scenario is jointly modeling treatments across a set of patients with varying number of medical encounters, where the alignment of events in time bears no clinical meaning, and it may also be impossible to align them due to their varying length. Despite recent improvements on scaling up unconstrained PARAFAC2, its model factors are usually dense and sensitive to noise which limits their interpretability. As a result, the following open challenges remain: a) various modeling constraints, such as temporal smoothness, sparsity and non-negativity, are needed to be imposed for interpretable temporal modeling and b) a scalable approach is required to support those constraints efficiently for large datasets. To tackle these challenges, we propose a COnstrained PARAFAC2 (COPA) method, which carefully incorporates optimization constraints such as temporal smoothness, sparsity, and non-negativity in the resulting factors. To efficiently support all those constraints, COPA adopts a hybrid optimization framework using alternating optimization and alternating direction method of multiplier (AO-ADMM). As evaluated on large electronic health record (EHR) datasets with hundreds of thousands of patients, COPA achieves significant speedups (up to 36x faster) over prior PARAFAC2 approaches that only attempt to handle a subset of the constraints that COPA enables. Overall, our method outperforms all the baselines attempting to handle a subset of the constraints in terms of speed, while achieving the same level of accuracy. …

Heterogeneous Graph Neural Network google
Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its metapath based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis. …

Stochastic Conjunctive Normal Form (SCNF) google
Probabilistic Boolean Networks (PBNs) have been previously proposed so as to gain insights into complex dynamical systems. However, identification of large networks and of the underlying discrete Markov Chain which describes their temporal evolution, still remains a challenge. In this paper, we introduce an equivalent representation for the PBN, the Stochastic Conjunctive Normal Form (SCNF), which paves the way to a scalable learning algorithm and helps predict long-run dynamic behavior of large-scale systems. Moreover, SCNF allows its efficient sampling so as to statistically infer multi-step transition probabilities which can provide knowledge on the activity levels of individual nodes in the long run. …

Advertisements