In real-world recognition/classification tasks, limited by various objective factors, it is usually difficult to collect training samples to exhaust all classes when training a recognizer or classifier. A more realistic scenario is open set recognition (OSR), where incomplete knowledge of the world exists at training time, and unknown classes can be submitted to an algorithm during testing, requiring the classifiers not only to accurately classify the seen classes, but also to effectively deal with the unseen ones. This paper provides a comprehensive survey of existing open set recognition techniques covering various aspects ranging from related definitions, representations of models, datasets, experiment setup and evaluation metrics. Furthermore, we briefly analyze the relationships between OSR and its related tasks including zero-shot, one-shot (few-shot) recognition/learning techniques, classification with reject option, and so forth. Additionally, we also overview the open world recognition which can be seen as a natural extension of OSR. Importantly, we highlight the limitations of existing approaches and point out some promising subsequent research directions in this field. Recent Advances in Open Set Recognition: A Survey

Advertisements