Constrained Attention Network (CAN) google
Aspect level sentiment classification is a fine-grained sentiment analysis task, compared to the sentence level classification. A sentence usually contains one or more aspects. To detect the sentiment towards a particular aspect in a sentence, previous studies have developed various methods for generating aspect-specific sentence representations. However, these studies handle each aspect of a sentence separately. In this paper, we argue that multiple aspects of a sentence are usually orthogonal based on the observation that different aspects concentrate on different parts of the sentence. To force the orthogonality among aspects, we propose constrained attention networks (CAN) for multi-aspect sentiment analysis, which handles multiple aspects of a sentence simultaneously. Experimental results on two public datasets demonstrate the effectiveness of our approach. We also extend our approach to multi-task settings, outperforming the state-of-the-arts significantly. …

QuickXsort google
QuickXsort is a highly efficient in-place sequential sorting scheme that mixes Hoare’s Quicksort algorithm with X, where X can be chosen from a wider range of other known sorting algorithms, like Heapsort, Insertionsort and Mergesort. Its major advantage is that QuickXsort can be in-place even if X is not. In this work we provide general transfer theorems expressing the number of comparisons of QuickXsort in terms of the number of comparisons of X. More specifically, if pivots are chosen as medians of (not too fast) growing size samples, the average number of comparisons of QuickXsort and X differ only by $o(n)$-terms. For median-of-$k$ pivot selection for some constant $k$, the difference is a linear term whose coefficient we compute precisely. For instance, median-of-three QuickMergesort uses at most $n \lg n – 0.8358n + O(\log n)$ comparisons. Furthermore, we examine the possibility of sorting base cases with some other algorithm using even less comparisons. By doing so the average-case number of comparisons can be reduced down to $n \lg n- 1.4106n + o(n)$ for a remaining gap of only $0.0321n$ comparisons to the known lower bound (while using only $O(\log n)$ additional space and $O(n \log n)$ time overall). Implementations of these sorting strategies show that the algorithms challenge well-established library implementations like Musser’s Introsort. …

Adversarial Transformation Network (ATN) google
Time series classification models have been garnering significant importance in the research community. However, not much research has been done on generating adversarial samples for these models. These adversarial samples can become a security concern. In this paper, we propose utilizing an adversarial transformation network (ATN) on a distilled model to attack various time series classification models. The proposed attack on the classification model utilizes a distilled model as a surrogate that mimics the behavior of the attacked classical time series classification models. Our proposed methodology is applied onto 1-Nearest Neighbor Dynamic Time Warping (1-NN ) DTW, a Fully Connected Network and a Fully Convolutional Network (FCN), all of which are trained on 43 University of California Riverside (UCR) datasets. In this paper, we show both models were susceptible to attacks on all 43 datasets. To the best of our knowledge, such an attack on time series classification models has never been done before. Finally, we recommend future researchers that develop time series classification models to incorporating adversarial data samples into their training data sets to improve resilience on adversarial samples and to consider model robustness as an evaluative metric. …

Advertisements