Time Perception Machine google
Numerous powerful point process models have been developed to understand temporal patterns in sequential data from fields such as health-care, electronic commerce, social networks, and natural disaster forecasting. In this paper, we develop novel models for learning the temporal distribution of human activities in streaming data (e.g., videos and person trajectories). We propose an integrated framework of neural networks and temporal point processes for predicting when the next activity will happen. Because point processes are limited to taking event frames as input, we propose a simple yet effective mechanism to extract features at frames of interest while also preserving the rich information in the remaining frames. We evaluate our model on two challenging datasets. The results show that our model outperforms traditional statistical point process approaches significantly, demonstrating its effectiveness in capturing the underlying temporal dynamics as well as the correlation within sequential activities. Furthermore, we also extend our model to a joint estimation framework for predicting the timing, spatial location, and category of the activity simultaneously, to answer the when, where, and what of activity prediction. …

ARMA Point Process google
We introduce the ARMA (autoregressive-moving-average) point process, which is a Hawkes process driven by a Neyman-Scott process with Poisson immigration. It contains both the Hawkes and Neyman-Scott process as special cases and naturally combines self-exciting and shot-noise cluster mechanisms, useful in a variety of applications. The name ARMA is used because the ARMA point process is an appropriate analogue of the ARMA time series model for integer-valued series. As such, the ARMA point process framework accommodates a flexible family of models sharing methodological and mathematical similarities with ARMA time series. We derive an estimation procedure for ARMA point processes, as well as the integer ARMA models, based on an MCEM (Monte Carlo Expectation Maximization) algorithm. This powerful framework for estimation accommodates trends in immigration, multiple parametric specifications of excitement functions, as well as cases where marks and immigrants are not observed. …

Explanatory Graph google
This paper introduces a graphical model, namely an explanatory graph, which reveals the knowledge hierarchy hidden inside conv-layers of a pre-trained CNN. Each filter in a conv-layer of a CNN for object classification usually represents a mixture of object parts. We develop a simple yet effective method to disentangle object-part pattern components from each filter. We construct an explanatory graph to organize the mined part patterns, where a node represents a part pattern, and each edge encodes co-activation relationships and spatial relationships between patterns. More crucially, given a pre-trained CNN, the explanatory graph is learned without a need of annotating object parts. Experiments show that each graph node consistently represented the same object part through different images, which boosted the transferability of CNN features. We transferred part patterns in the explanatory graph to the task of part localization, and our method significantly outperformed other approaches. …

Advertisements