Fake news detection is a critical yet challenging problem in Natural Language Processing (NLP). The rapid rise of social networking platforms has not only yielded a vast increase in information accessibility but has also accelerated the spread of fake news. Given the massive amount of Web content, automatic fake news detection is a practical NLP problem required by all online content providers. This paper presents a survey on fake news detection. Our survey introduces the challenges of automatic fake news detection. We systematically review the datasets and NLP solutions that have been developed for this task. We also discuss the limits of these datasets and problem formulations, our insights, and recommended solutions. A Survey on Natural Language Processing for Fake News Detection