ReStoCNet google
In this work, we propose ReStoCNet, a residual stochastic multilayer convolutional Spiking Neural Network (SNN) composed of binary kernels, to reduce the synaptic memory footprint and enhance the computational efficiency of SNNs for complex pattern recognition tasks. ReStoCNet consists of an input layer followed by stacked convolutional layers for hierarchical input feature extraction, pooling layers for dimensionality reduction, and fully-connected layer for inference. In addition, we introduce residual connections between the stacked convolutional layers to improve the hierarchical feature learning capability of deep SNNs. We propose Spike Timing Dependent Plasticity (STDP) based probabilistic learning algorithm, referred to as Hybrid-STDP (HB-STDP), incorporating Hebbian and anti-Hebbian learning mechanisms, to train the binary kernels forming ReStoCNet in a layer-wise unsupervised manner. We demonstrate the efficacy of ReStoCNet and the presented HB-STDP based unsupervised training methodology on the MNIST and CIFAR-10 datasets. We show that residual connections enable the deeper convolutional layers to self-learn useful high-level input features and mitigate the accuracy loss observed in deep SNNs devoid of residual connections. The proposed ReStoCNet offers >20x kernel memory compression compared to full-precision (32-bit) SNN while yielding high enough classification accuracy on the chosen pattern recognition tasks. …

Policy-Belief-Iteration (P-BIT) google
In situations where explicit communication is limited, a human collaborator is typically able to learn to: (i) infer the meaning behind their partner’s actions and (ii) balance between taking actions that are exploitative given their current understanding of the state vs. those that can convey private information about the state to their partner. The first component of this learning process has been well-studied in multi-agent systems, whereas the second — which is equally crucial for a successful collaboration — has not. In this work, we complete the learning process and introduce our novel algorithm, Policy-Belief-Iteration (‘P-BIT’), which mimics both components mentioned above. A belief module models the other agent’s private information by observing their actions, whilst a policy module makes use of the inferred private information to return a distribution over actions. They are mutually reinforced with an EM-like algorithm. We use a novel auxiliary reward to encourage information exchange by actions. We evaluate our approach on the non-competitive bidding problem from contract bridge and show that by self-play agents are able to effectively collaborate with implicit communication, and P-BIT outperforms several meaningful baselines that have been considered. …

Bi-Stream Emotion Attribution-Classification Network (BEAC-Net) google
Emotional content is a crucial ingredient in user-generated videos. However, the sparsely expressed emotions in the user-generated video cause difficulties to emotions analysis in videos. In this paper, we propose a new neural approach—Bi-stream Emotion Attribution-Classification Network (BEAC-Net) to solve three related emotion analysis tasks: emotion recognition, emotion attribution and emotion-oriented summarization, in an integrated framework. BEAC-Net has two major constituents, an attribution network and a classification network. The attribution network extracts the main emotional segment that classification should focus on in order to mitigate the sparsity problem. The classification network utilizes both the extracted segment and the original video in a bi-stream architecture. We contribute a new dataset for the emotion attribution task with human-annotated ground-truth labels for emotion segments. Experiments on two video datasets demonstrate superior performance of the proposed framework and the complementary nature of the dual classification streams. …

Advertisements