Google Cloud Dataflow google
Simplified stream and batch data processing, with equal reliability and expressiveness. Cloud Dataflow is a fully-managed service for transforming and enriching data in stream (real time) and batch (historical) modes with equal reliability and expressiveness — no more complex workarounds or compromises needed. And with its serverless approach to resource provisioning and management, you have access to virtually limitless capacity to solve your biggest data processing challenges, while paying only for what you use. Cloud Dataflow unlocks transformational use cases across industries, including:
· check Clickstream, Point-of-Sale, and segmentation analysis in retail
· check Fraud detection in financial services
· check Personalized user experience in gaming
· check IoT analytics in manufacturing, healthcare, and logistics …


Stochastic Quantized Activation Distribution (SQUAD) google
High-risk domains require reliable confidence estimates from predictive models. Deep latent variable models provide these, but suffer from the rigid variational distributions used for tractable inference, which err on the side of overconfidence. We propose Stochastic Quantized Activation Distributions (SQUAD), which imposes a flexible yet tractable distribution over discretized latent variables. The proposed method is scalable, self-normalizing and sample efficient. We demonstrate that the model fully utilizes the flexible distribution, learns interesting non-linearities, and provides predictive uncertainty of competitive quality. …

Texture Effects Transfer GAN (TET-GAN) google
Text effects transfer technology automatically makes the text dramatically more impressive. However, previous style transfer methods either study the model for general style, which cannot handle the highly-structured text effects along the glyph, or require manual design of subtle matching criteria for text effects. In this paper, we focus on the use of the powerful representation abilities of deep neural features for text effects transfer. For this purpose, we propose a novel Texture Effects Transfer GAN (TET-GAN), which consists of a stylization subnetwork and a destylization subnetwork. The key idea is to train our network to accomplish both the objective of style transfer and style removal, so that it can learn to disentangle and recombine the content and style features of text effects images. To support the training of our network, we propose a new text effects dataset with as much as 64 professionally designed styles on 837 characters. We show that the disentangled feature representations enable us to transfer or remove all these styles on arbitrary glyphs using one network. Furthermore, the flexible network design empowers TET-GAN to efficiently extend to a new text style via one-shot learning where only one example is required. We demonstrate the superiority of the proposed method in generating high-quality stylized text over the state-of-the-art methods. …

Advertisements