Neural Collective Entity Linking (NCEL) google
Entity Linking aims to link entity mentions in texts to knowledge bases, and neural models have achieved recent success in this task. However, most existing methods rely on local contexts to resolve entities independently, which may usually fail due to the data sparsity of local information. To address this issue, we propose a novel neural model for collective entity linking, named as NCEL. NCEL applies Graph Convolutional Network to integrate both local contextual features and global coherence information for entity linking. To improve the computation efficiency, we approximately perform graph convolution on a subgraph of adjacent entity mentions instead of those in the entire text. We further introduce an attention scheme to improve the robustness of NCEL to data noise and train the model on Wikipedia hyperlinks to avoid overfitting and domain bias. In experiments, we evaluate NCEL on five publicly available datasets to verify the linking performance as well as generalization ability. We also conduct an extensive analysis of time complexity, the impact of key modules, and qualitative results, which demonstrate the effectiveness and efficiency of our proposed method. …

Sequential Network Transfer google
We study the problem of adapting neural sentence embedding models to the domain of human activities to capture their relations in different dimensions. We introduce a novel approach, Sequential Network Transfer, and show that it largely improves the performance on all dimensions. We also extend this approach to other semantic similarity datasets, and show that the resulting embeddings outperform traditional transfer learning approaches in many cases, achieving state-of-the-art results on the Semantic Textual Similarity (STS) Benchmark. To account for the improvements, we provide some interpretation of what the networks have learned. Our results suggest that Sequential Network Transfer is highly effective for various sentence embedding models and tasks. …

CommunityGAN google
Community detection refers to the task of discovering groups of vertices sharing similar properties or functions so as to understand the network data. With the recent development of deep learning, graph representation learning techniques are also utilized for community detection. However, the communities can only be inferred by applying clustering algorithms based on learned vertex embeddings. These general cluster algorithms like K-means and Gaussian Mixture Model cannot output much overlapped communities, which have been proved to be very common in many real-world networks. In this paper, we propose CommunityGAN, a novel community detection framework that jointly solves overlapping community detection and graph representation learning. First, unlike the embedding of conventional graph representation learning algorithms where the vector entry values have no specific meanings, the embedding of CommunityGAN indicates the membership strength of vertices to communities. Second, a specifically designed Generative Adversarial Net (GAN) is adopted to optimize such embedding. Through the minimax competition between the motif-level generator and discriminator, both of them can alternatively and iteratively boost their performance and finally output a better community structure. Extensive experiments on synthetic data and real-world tasks demonstrate that CommunityGAN achieves substantial community detection performance gains over the state-of-the-art methods. …