Attention Map Generator (AMG) google
We propose an attention-injective deformable convolutional network called ADCrowdNet for crowd understanding that can address the accuracy degradation problem of highly congested noisy scenes. ADCrowdNet contains two concatenated networks. An attention-aware network called Attention Map Generator (AMG) first detects crowd regions in images and computes the congestion degree of these regions. Based on detected crowd regions and congestion priors, a multi-scale deformable network called Density Map Estimator (DME) then generates high-quality density maps. With the attention-aware training scheme and multi-scale deformable convolutional scheme, the proposed ADCrowdNet achieves the capability of being more effective to capture the crowd features and more resistant to various noises. We have evaluated our method on four popular crowd counting datasets (ShanghaiTech, UCF_CC_50, WorldEXPO’10, and UCSD) and an extra vehicle counting dataset TRANCOS, our approach overwhelmingly beats existing approaches on all of these datasets. …

Classification Using Link Prediction (CULP) google
Link prediction in a graph is the problem of detecting the missing links that would be formed in the near future. Using a graph representation of the data, we can convert the problem of classification to the problem of link prediction which aims at finding the missing links between the unlabeled data (unlabeled nodes) and their classes. To our knowledge, despite the fact that numerous algorithms use the graph representation of the data for classification, none are using link prediction as the heart of their classifying procedure. In this work, we propose a novel algorithm called CULP (Classification Using Link Prediction) which uses a new structure namely Label Embedded Graph or LEG and a link predictor to find the class of the unlabeled data. Different link predictors along with Compatibility Score – a new link predictor we proposed that is designed specifically for our settings – has been used and showed promising results for classifying different datasets. This paper further improved CULP by designing an extension called CULM which uses a majority vote (hence the M in the acronym) procedure with weights proportional to the predictions’ confidences to use the predictive power of multiple link predictors and also exploits the low level features of the data. Extensive experimental evaluations shows that both CULP and CULM are highly accurate and competitive with the cutting edge graph classifiers and general classifiers. …

Transferlearning Oriented Minority Over-Sampling Technique Based Feature Weighting Transfer Naive Bayes (TOMOFWTNB) google
Cross-project defect prediction (CPDP) aims to predict defects of projects lacking training data by using prediction models trained on historical defect data from other projects. However, since the distribution differences between datasets from different projects, it is still a challenge to build high-quality CPDP models. Unfortunately, class imbalanced nature of software defect datasets further increases the difficulty. In this paper, we propose a transferlearning oriented minority over-sampling technique (TOMO) based feature weighting transfer naive Bayes (FWTNB) approach (TOMOFWTNB) for CPDP by considering both classimbalance and feature importance problems. Differing from traditional over-sampling techniques, TOMO not only can balance the data but reduce the distribution difference. And then FWTNB is used to further increase the similarity of two distributions. Experiments are performed on 11 public defect datasets. The experimental results show that (1) TOMO improves the average G-Measure by 23.7\%$\sim$41.8\%, and the average MCC by 54.2\%$\sim$77.8\%. (2) feature weighting (FW) strategy improves the average G-Measure by 11\%, and the average MCC by 29.2\%. (3) TOMOFWTNB improves the average G-Measure value by at least 27.8\%, and the average MCC value by at least 71.5\%, compared with existing state-of-theart CPDP approaches. It can be concluded that (1) TOMO is very effective for addressing class-imbalance problem in CPDP scenario; (2) our FW strategy is helpful for CPDP; (3) TOMOFWTNB outperforms previous state-of-the-art CPDP approaches. …

Advertisements