Detection Network (DetNet) google
In this paper we consider Multiple-Input-Multiple-Output (MIMO) detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a Detection Network (DetNet) which is specifically designed for the task. The structure of DetNet is obtained by unfolding the iterations of a projected gradient descent algorithm into a network. We compare the accuracy and runtime complexity of the purposed approaches and achieve state-of-the-art performance while maintaining low computational requirements. Furthermore, we manage to train a single network to detect over an entire distribution of channels. Finally, we consider detection with soft outputs and show that the networks can easily be modified to produce soft decisions. …

CrescendoNet google
We introduce a new deep convolutional neural network, CrescendoNet, by stacking simple building blocks without residual connections. Each Crescendo block contains independent convolution paths with increased depths. The numbers of convolution layers and parameters are only increased linearly in Crescendo blocks. In experiments, CrescendoNet with only 15 layers outperforms almost all networks without residual connections on benchmark datasets, CIFAR10, CIFAR100, and SVHN. Given sufficient amount of data as in SVHN dataset, CrescendoNet with 15 layers and 4.1M parameters can match the performance of DenseNet-BC with 250 layers and 15.3M parameters. CrescendoNet provides a new way to construct high performance deep convolutional neural networks without residual connections. Moreover, through investigating the behavior and performance of subnetworks in CrescendoNet, we note that the high performance of CrescendoNet may come from its implicit ensemble behavior, which differs from the FractalNet that is also a deep convolutional neural network without residual connections. Furthermore, the independence between paths in CrescendoNet allows us to introduce a new path-wise training procedure, which can reduce the memory needed for training. …

Model Agnostic Meta Learning (MAML) google
We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.
How to train your MAML

Advertisements