Conditional Graph Neural Process (CGNP) google
We introduce a novel encoder-decoder architecture to embed functional processes into latent vector spaces. This embedding can then be decoded to sample the encoded functions over any arbitrary domain. This autoencoder generalizes the recently introduced Conditional Neural Process (CNP) model of random processes. Our architecture employs the latest advances in graph neural networks to process irregularly sampled functions. Thus, we refer to our model as Conditional Graph Neural Process (CGNP). Graph neural networks can effectively exploit `local’ structures of the metric spaces over which the functions/processes are defined. The contributions of this paper are twofold: (i) a novel graph-based encoder-decoder architecture for functional and process embeddings, and (ii) a demonstration of the importance of using the structure of metric spaces for this type of representations. …

Point-Wise Convolutional Neural Network google
Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this technical report, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network is point-wise convolution, a convolution operator that can be applied at each point of a point cloud. Our fully convolutional network design, while being simple to implement, can yield competitive accuracy in both semantic segmentation and object recognition task. …

Slimmable Neural Network google
We present a simple and general method to train a single neural network executable at different widths (number of channels in a layer), permitting instant and adaptive accuracy-efficiency trade-offs at runtime. Instead of training individual networks with different width configurations, we train a shared network with switchable batch normalization. At runtime, the network can adjust its width on the fly according to on-device benchmarks and resource constraints, rather than downloading and offloading different models. Our trained networks, named slimmable neural networks, achieve similar (and in many cases better) ImageNet classification accuracy than individually trained models of MobileNet v1, MobileNet v2, ShuffleNet and ResNet-50 at different widths respectively. We also demonstrate better performance of slimmable models compared with individual ones across a wide range of applications including COCO bounding-box object detection, instance segmentation and person keypoint detection without tuning hyper-parameters. Lastly we visualize and discuss the learned features of slimmable networks. Code and models are available at: https://…/slimmable_networks