In this Book we argue that the fruitful interaction of computer vision and belief calculus is capable of stimulating significant advances in both fields. From a methodological point of view, novel theoretical results concerning the geometric and algebraic properties of belief functions as mathematical objects are illustrated and discussed in Part II, with a focus on both a perspective ‘geometric approach’ to uncertainty and an algebraic solution to the issue of conflicting evidence. In Part III we show how these theoretical developments arise from important computer vision problems (such as articulated object tracking, data association and object pose estimation) to which, in turn, the evidential formalism is able to provide interesting new solutions. Finally, some initial steps towards a generalization of the notion of total probability to belief functions are taken, in the perspective of endowing the theory of evidence with a complete battery of estimation and inference tools to the benefit of all scientists and practitioners. Visions of a generalized probability theory

# Document worth reading: “Visions of a generalized probability theory”

**14**
*Wednesday*
Nov 2018

Posted Documents

in