Generalized Value Iteration Network (GVIN) google
In this paper, we introduce a generalized value iteration network (GVIN), which is an end-to-end neural network planning module. GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. We propose three novel differentiable kernels as graph convolution operators and show that the embedding based kernel achieves the best performance. We further propose episodic Q-learning, an improvement upon traditional n-step Q-learning that stabilizes training for networks that contain a planning module. Lastly, we evaluate GVIN on planning problems in 2D mazes, irregular graphs, and real-world street networks, showing that GVIN generalizes well for both arbitrary graphs and unseen graphs of larger scale and outperforms a naive generalization of VIN (discretizing a spatial graph into a 2D image). …

Transfer Automatic Machine Learning google
Building effective neural networks requires many design choices. These include the network topology, optimization procedure, regularization, stability methods, and choice of pre-trained parameters. This design is time consuming and requires expert input. Automatic Machine Learning aims automate this process using hyperparameter optimization. However, automatic model building frameworks optimize performance on each task independently, whereas human experts leverage prior knowledge when designing a new network. We propose Transfer Automatic Machine Learning, a method to accelerate network design using knowledge of prior tasks. For this, we build upon reinforcement learning architecture design methods to support parallel training on multiple tasks and transfer the search strategy to new tasks. Tested on NLP and Image classification tasks, Transfer Automatic Machine Learning reduces convergence time over single-task methods by almost an order of magnitude on 13 out of 14 tasks. It achieves better test set accuracy on 10 out of 13 tasks NLP tasks and improves performance on CIFAR-10 image recognition from 95.3% to 97.1%. …

Cavs google
Recent deep learning (DL) models have moved beyond static network architectures to dynamic ones, handling data where the network structure changes every example, such as sequences of variable lengths, trees, and graphs. Existing dataflow-based programming models for DL—both static and dynamic declaration—either cannot readily express these dynamic models, or are inefficient due to repeated dataflow graph construction and processing, and difficulties in batched execution. We present Cavs, a vertex-centric programming interface and optimized system implementation for dynamic DL models. Cavs represents dynamic network structure as a static vertex function $\mathcal{F}$ and a dynamic instance-specific graph $\mathcal{G}$, and performs backpropagation by scheduling the execution of $\mathcal{F}$ following the dependencies in $\mathcal{G}$. Cavs bypasses expensive graph construction and preprocessing overhead, allows for the use of static graph optimization techniques on pre-defined operations in $\mathcal{F}$, and naturally exposes batched execution opportunities over different graphs. Experiments comparing Cavs to two state-of-the-art frameworks for dynamic NNs (TensorFlow Fold and DyNet) demonstrate the efficacy of this approach: Cavs achieves a near one order of magnitude speedup on training of various dynamic NN architectures, and ablations demonstrate the contribution of our proposed batching and memory management strategies. …

Advertisements