This document is designed to be a first-year graduate-level introduction to probabilistic programming. It not only provides a thorough background for anyone wishing to use a probabilistic programming system, but also introduces the techniques needed to design and build these systems. It is aimed at people who have an undergraduate-level understanding of either or, ideally, both probabilistic machine learning and programming languages. We start with a discussion of model-based reasoning and explain why conditioning as a foundational computation is central to the fields of probabilistic machine learning and artificial intelligence. We then introduce a simple first-order probabilistic programming language (PPL) whose programs define static-computation-graph, finite-variable-cardinality models. In the context of this restricted PPL we introduce fundamental inference algorithms and describe how they can be implemented in the context of models denoted by probabilistic programs. In the second part of this document, we introduce a higher-order probabilistic programming language, with a functionality analogous to that of established programming languages. This affords the opportunity to define models with dynamic computation graphs, at the cost of requiring inference methods that generate samples by repeatedly executing the program. Foundational inference algorithms for this kind of probabilistic programming language are explained in the context of an interface between program executions and an inference controller. This document closes with a chapter on advanced topics which we believe to be, at the time of writing, interesting directions for probabilistic programming research; directions that point towards a tight integration with deep neural network research and the development of systems for next-generation artificial intelligence applications. An Introduction to Probabilistic Programming

# Document worth reading: “An Introduction to Probabilistic Programming”

**12**
*Monday*
Nov 2018

Posted Documents

in