QuAC google
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The interactions involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard are available at quac.ai. …

Differentiable Particle Filter (DPF) google
We present differentiable particle filters (DPFs): a differentiable implementation of the particle filter algorithm with learnable motion and measurement models. Since DPFs are end-to-end differentiable, we can efficiently train their models by optimizing end-to-end state estimation performance, rather than proxy objectives such as model accuracy. DPFs encode the structure of recursive state estimation with prediction and measurement update that operate on a probability distribution over states. This structure represents an algorithmic prior that improves learning performance in state estimation problems while enabling explainability of the learned model. Our experiments on simulated and real data show substantial benefits from end-to- end learning with algorithmic priors, e.g. reducing error rates by ~80%. Our experiments also show that, unlike long short-term memory networks, DPFs learn localization in a policy-agnostic way and thus greatly improve generalization. Source code is available at https://…/differentiable-particle-filters.

Transfer Function Model google
Transfer function models describe the relationship between the inputs and outputs of a system using a ratio of polynomials. The model order is equal to the order of the denominator polynomial. The roots of the denominator polynomial are referred to as the model poles. The roots of the numerator polynomial are referred to as the model zeros. The parameters of a transfer function model are its poles, zeros and transport delays. …

Advertisements