Accumulated Gradient Normalization google
This work addresses the instability in asynchronous data parallel optimization. It does so by introducing a novel distributed optimizer which is able to efficiently optimize a centralized model under communication constraints. The optimizer achieves this by pushing a normalized sequence of first-order gradients to a parameter server. This implies that the magnitude of a worker delta is smaller compared to an accumulated gradient, and provides a better direction towards a minimum compared to first-order gradients, which in turn also forces possible implicit momentum fluctuations to be more aligned since we make the assumption that all workers contribute towards a single minima. As a result, our approach mitigates the parameter staleness problem more effectively since staleness in asynchrony induces (implicit) momentum, and achieves a better convergence rate compared to other optimizers such as asynchronous EASGD and DynSGD, which we show empirically. …

Generalized Resistant Hyperplane Mechanisms google
This paper is part of an emerging line of work at the intersection of machine learning and mechanism design, which aims to avoid noise in training data by correctly aligning the incentives of data sources. Specifically, we focus on the ubiquitous problem of linear regression, where strategyproof mechanisms have previously been identified in two dimensions. In our setting, agents have single-peaked preferences and can manipulate only their response variables. Our main contribution is the discovery of a family of group strategyproof linear regression mechanisms in any number of dimensions, which we call generalized resistant hyperplane mechanisms. The game-theoretic properties of these mechanisms — and, in fact, their very existence — are established through a connection to a discrete version of the Ham Sandwich Theorem. …

Recurrent Attentive and Intensive Model (RAIM) google
With the improvement of medical data capturing, vast amount of continuous patient monitoring data, e.g., electrocardiogram (ECG), real-time vital signs and medications, become available for clinical decision support at intensive care units (ICUs). However, it becomes increasingly challenging to model such data, due to high density of the monitoring data, heterogeneous data types and the requirement for interpretable models. Integration of these high-density monitoring data with the discrete clinical events (including diagnosis, medications, labs) is challenging but potentially rewarding since richness and granularity in such multimodal data increase the possibilities for accurate detection of complex problems and predicting outcomes (e.g., length of stay and mortality). We propose Recurrent Attentive and Intensive Model (RAIM) for jointly analyzing continuous monitoring data and discrete clinical events. RAIM introduces an efficient attention mechanism for continuous monitoring data (e.g., ECG), which is guided by discrete clinical events (e.g, medication usage). We apply RAIM in predicting physiological decompensation and length of stay in those critically ill patients at ICU. With evaluations on MIMIC- III Waveform Database Matched Subset, we obtain an AUC-ROC score of 90.18% for predicting decompensation and an accuracy of 86.82% for forecasting length of stay with our final model, which outperforms our six baseline models. …

Advertisements