Nested Association Mapping (NAM) google
Nested association mapping (NAM) is a technique designed by the labs of Edward Buckler, James Holland, and Michael McMullen for identifying and dissecting the genetic architecture of complex traits in corn (Zea mays). It is important to note that nested association mapping (unlike Association mapping) is a specific technique that cannot be performed outside of a specifically designed population such as the Maize NAM population. …

Fixed-Point Factorized Networks (FFN) google
In recent years, Deep Neural Networks (DNNs) based methods have achieved remarkable performance in a wide range of tasks and have been among the most powerful and widely used techniques in computer vision, speech recognition and Natural Language Processing. However, DNN-based methods are both computational-intensive and resource-consuming, which hinders the application of these methods on embedded systems like smart phones. To alleviate this problem, we introduce a novel Fixed-point Factorized Networks (FFN) on pre-trained models to reduce the computational complexity as well as the storage requirement of networks. Extensive experiments on large-scale ImageNet classification task show the effectiveness of our proposed method. …

h-detach google
Recurrent neural networks are known for their notorious exploding and vanishing gradient problem (EVGP). This problem becomes more evident in tasks where the information needed to correctly solve them exist over long time scales, because EVGP prevents important gradient components from being back-propagated adequately over a large number of steps. We introduce a simple stochastic algorithm (\textit{h}-detach) that is specific to LSTM optimization and targeted towards addressing this problem. Specifically, we show that when the LSTM weights are large, the gradient components through the linear path (cell state) in the LSTM computational graph get suppressed. Based on the hypothesis that these components carry information about long term dependencies (which we show empirically), their suppression can prevent LSTMs from capturing them. Our algorithm prevents gradients flowing through this path from getting suppressed, thus allowing the LSTM to capture such dependencies better. We show significant convergence and generalization improvements using our algorithm on various benchmark datasets. …