PC-LPGM google
Biological processes underlying the basic functions of a cell involve complex interactions between genes. From a technical point of view, these interactions can be represented through a graph where genes and their connections are, respectively, nodes and edges. The main objective of this paper is to develop a statistical framework for modelling the interactions between genes when the activity of genes is measured on a discrete scale. In detail, we define a new algorithm for learning the structure of undirected graphs, PC-LPGM, proving its theoretical consistence in the limit of infinite observations. The proposed algorithm shows promising results when applied to simulated data as well as to real data. …

Minimax Regularization google
Classical approach to regularization is to design norms enhancing smoothness or sparsity and then to use this norm or some power of this norm as a regularization function. The choice of the regularization function (for instance a power function) in terms of the norm is mostly dictated by computational purpose rather than theoretical considerations. In this work, we design regularization functions that are motivated by theoretical arguments. To that end we introduce a concept of optimal regularization called ‘minimax regularization’ and, as a proof of concept, we show how to construct such a regularization function for the $\ell_1^d$ norm for the random design setup. We develop a similar construction for the deterministic design setup. It appears that the resulting regularized procedures are different from the one used in the LASSO in both setups. …

Perfect Match google
Learning representations for counterfactual inference from observational data is of high practical relevance for many domains, such as healthcare, public policy and economics. Counterfactual inference enables one to answer ‘What if…?’ questions, such as ‘What would be the outcome if we gave this patient treatment $t_1$?’. However, current methods for training neural networks for counterfactual inference on observational data are either overly complex, limited to settings with only two available treatment options, or both. Here, we present Perfect Match (PM), a method for training neural networks for counterfactual inference that is easy to implement, compatible with any architecture, does not add computational complexity or hyperparameters, and extends to any number of treatments. PM is based on the idea of augmenting samples within a minibatch with their propensity-matched nearest neighbours. Our experiments demonstrate that PM outperforms a number of more complex state-of-the-art methods in inferring counterfactual outcomes across several real-world and semi-synthetic datasets. …