Deep Neural Map (DNM) google
We introduce a new unsupervised representation learning and visualization using deep convolutional networks and self organizing maps called Deep Neural Maps (DNM). DNM jointly learns an embedding of the input data and a mapping from the embedding space to a two-dimensional lattice. We compare visualizations of DNM with those of t-SNE and LLE on the MNIST and COIL-20 data sets. Our experiments show that the DNM can learn efficient representations of the input data, which reflects characteristics of each class. This is shown via back-projecting the neurons of the map on the data space. …

Differential Message Importance Measure (DMIM) google
Information collection is a fundamental problem in big data, where the size of sampling sets plays a very important role. This work considers the information collection process by taking message importance into account. Similar to differential entropy, we define differential message importance measure (DMIM) as a measure of message importance for continuous random variable. It is proved that the change of DMIM can describe the gap between the distribution of a set of sample values and a theoretical distribution. In fact, the deviation of DMIM is equivalent to Kolmogorov-Smirnov statistic, but it offers a new way to characterize the distribution goodness-of-fit. Numerical results show some basic properties of DMIM and the accuracy of the proposed approximate values. Furthermore, it is also obtained that the empirical distribution approaches the real distribution with decreasing of the DMIM deviation, which contributes to the selection of suitable sampling points in actual system. …

EAP google
A good clustering algorithm should not only be able to discover clusters of arbitrary shapes (global view) but also provide additional information, which can be used to gain more meaningful insights into the internal structure of the clusters (local view). In this work we use the mathematical framework of factor graphs and message passing algorithms to optimize a pairwise similarity based cost function, in the same spirit as was done in Affinity Propagation. Using this framework we develop two variants of a new clustering algorithm, EAP and SHAPE. EAP/SHAPE can not only discover clusters of arbitrary shapes but also provide a rich local view in the form of meaningful local representatives (exemplars) and connections between these local exemplars. We discuss how this local information can be used to gain various insights about the clusters including varying relative cluster densities and indication of local strength in different regions of a cluster . We also discuss how this can help an analyst in discovering and resolving potential inconsistencies in the results. The efficacy of EAP/SHAPE is shown by applying it to various synthetic and real world benchmark datasets. …

Advertisements