StochasticNet google
Deep neural networks is a branch in machine learning that has seen a meteoric rise in popularity due to its powerful abilities to represent and model high-level abstractions in highly complex data. One area in deep neural networks that is ripe for exploration is neural connectivity formation. A pivotal study on the brain tissue of rats found that synaptic formation for specific functional connectivity in neocortical neural microcircuits can be surprisingly well modeled and predicted as a random formation. Motivated by this intriguing finding, we introduce the concept of StochasticNet, where deep neural networks are formed via stochastic connectivity between neurons. Such stochastic synaptic formations in a deep neural network architecture can potentially allow for efficient utilization of neurons for performing specific tasks. To evaluate the feasibility of such a deep neural network architecture, we train a StochasticNet using three image datasets. Experimental results show that a StochasticNet can be formed that provides comparable accuracy and reduced overfitting when compared to conventional deep neural networks with more than two times the number of neural connections. …

Piecewise Linear (PWL) google
In this paper, we study the representational power of deep neural networks (DNN) that belong to the family of piecewise-linear (PWL) functions, based on PWL activation units such as rectifier or maxout. We investigate the complexity of such networks by studying the number of linear regions of the PWL function. Typically, a PWL function from a DNN can be seen as a large family of linear functions acting on millions of such regions. We directly build upon the work of Montufar et al. (2014) and Raghu et al. (2017) by refining the upper and lower bounds on the number of linear regions for rectified and maxout networks. In addition to achieving tighter bounds, we also develop a novel method to perform exact enumeration or counting of the number of linear regions with a mixed-integer linear formulation that maps the input space to output. We use this new capability to visualize how the number of linear regions change while training DNNs. …

Conditional WaveGAN (cWaveGAN) google
Generative models are successfully used for image synthesis in the recent years. But when it comes to other modalities like audio, text etc little progress has been made. Recent works focus on generating audio from a generative model in an unsupervised setting. We explore the possibility of using generative models conditioned on class labels. Concatenation based conditioning and conditional scaling were explored in this work with various hyper-parameter tuning methods. In this paper we introduce Conditional WaveGANs (cWaveGAN). Find our implementation at https://…/cwavegan